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1
I N T R O D U C T I O N

1.1 introduction

Poincaré had discovered limit cycle as a close trajectory which causes the system to return to

it in the context of his classic exploration on “Celestial mechanics" of three-body problems[1,

2], some of which was formally analyzed by Birkhoff in his famous book[3] on “Dynamical

system" and the legacy continued with several other workers[4–6] to trace the origin of auto-

oscillations of open natural systems. Self-oscillation as a Rayleigh oscillator[7–9] or Poincaré

limit cycle in open dynamical system[10–13] in contrast to ordinary oscillation does not need

a periodic driving force from outside. The nature or form of self-oscillation depends on many

features of the system but not on the initial condition. Baron Rayleigh[8, 9] due to his keen

interest for acoustic instruments, vibration of strings, motion of air in organ pipes and elec-

trical sound generation systems, propounded the basic oscillatory nature of such systems. A

remarkable interest in the aesthetics of human perception coupled with his mathematical tal-

ent ultimately he arrived at the theory of self-oscillation as the combined effect of nonlinear

processes in dissipation and maintenance of vibrational energy through proper shape and

size of the instrument[8, 9]. As a young subject it was perpetuated by many others[10–13] to

understand the mechanism as a part of feedback loop starting from the work of Van der Pol

in radio physics and engineering which brought the revolution in the theory of nonlinear

oscillations[10, 14]. Basic model in this scientific area of further exploration is precisely the

Rayleigh equation and remarkably it is still standing up with its enigma of nonlinear nature

of dissipation which originally needed an extraordinary perception in grasping the physical

nature of the problem[15–17]. The undamped oscillations have also been expressed in chem-

ical and biological systems, for example, Belousov–Zhabotinsky (BZ) reaction[15, 18–23],

periodic processes in photosynthesis[24], cell biology[25, 26], Glycolysis[6, 27, 28], Calcium

oscillation[29] and neural activities[30–32]. The theory of chemical oscillation by Prigogine

and Lefever, a Brusselator model[5, 33] as a tri-molecular chemical mechanism which estab-

lishes a compatibility of the nonlinear behaviour based on the chemical kinetic process. So

the Brusselator model of chemical oscillation, self-oscillation of Rayleigh equation in acous-
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tics and Van der Pol oscillator of radio engineering crosses all their limits of their field of

applicability and emerged as generic models of nonlinear phenomena[34–36] in natural pro-

cesses. Self-oscillation of substrates and products of Glycolytic reaction is one of the most

important metabolic pathway of production of energy of living world[29, 37]. Other periodic

orbits from localised in space to spatiotemporal domain, namely, traveling waves[36, 38] in

biophysical systems[29], all have been paving the path into physical and mathematical biol-

ogy. So it is quite expected that people have already found the common base of self-sustained

oscillation of Rayleigh oscillator of sound and chemical oscillator of Brusselator and Sel’kov

models[6] and they are shown to be reduced to the generalized Rayleigh equation[16]. More

generally, Liénard[10, 39–43] equation for limit cycle which also covers generalized Rayleigh

equation can also be utilzed to include the Van der Pol type equations to have the Liénard–

Levinson–Smith (LLS) equation[41–44] or sometimes called the generalised Liénard equation

and they are more suitable for arbitrary chemical and biophysical feedback systems.

A periodic orbit in an open nonlinear dynamical system described by two-dimensional

ordinary differential equation (ODE) stemming from various phenomenological sources is

one of the most important motivations to study nonlinear dynamics. As ordinary perturba-

tion theory often fails due to non-convergence of the series so in order to extract information

through perturbation theory there is a need to develop proper techniques to tackle the sum-

mation of otherwise divergent series. In this circumstance one has to look for various singular

perturbation techniques. All these methods basically demands that at every order of pertur-

bation the so called secular or divergent terms arising out of straightforward application

of perturbation theory be removed. It has proved to be a successful tool in finding approx-

imate solutions to weakly nonlinear differential equations with finite oscillatory period. In

the multi-scale perturbative treatment[45–49] of dynamical systems the amplitude and phase

of the oscillation get renormalized[46–48] and the perturbative series is uniformly valid and

does not have any secular term. On the other hand, self-sustained chemical oscillations[33, 36,

50] are also regularly observed in biological world to maintain a cyclic steady state e.g., cell

division[12, 28], Circadian oscillation[51], Calcium oscillations[52] and other bio-systems[11,

12, 36]. The generic feature of such diverse nature of nonlinear oscillations are due to auto-

catalysis and various feedback mechanisms into the system which are basically controlled

by a few slow time scales of the overall process. The examples of cyclic dynamics came to

the purview of natural phenomena from living systems to earth, atmosphere and heavenly

bodies. Such periodic orbits can be isochronous or the frequency may depend on their ampli-

tude of which the most common examples of periodic orbits of open systems are limit cycle

and in some special cases they become center. The ubiquity of limit cycle[10] in dynamical

system[10, 39, 53] described by a pair of ODEs are quite characterized mathematically, how-

ever, a general prescription of shape, size and the number of stable limit cycles in a given

system are not yet well established. From the physical point of view the response properties
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of a limit cycle due to parametrically excited by an external field is also ill understood unlike

ordinary external driving in various physical processes. On the one hand there is a challenge

in dealing with limit cycles in a strongly nonlinear systems inspite of several developments

of various multi-scale perturbation techniques like, Krylov–Bogolyubov (K-B) method[10, 34,

44, 54], Lindstedt-Poincaré method[34, 53], Renormalisation Group (RG) method[46, 48, 49]

etc. A limit cycle on the other hand in a given dynamical system can be a great tool as the

nature is playing through various stable limit cycles to regulate its self-organized processes

which need to be understood, for example, the three synchronized cyclic orbits called the

baroreceptor loop is a global feedback control mechanism of heart, lungs and the nervous

system in the brain to adjust the heart rate, the venous pressure in order to maintain the

arterial pressure at a given level for the ultimate goal of regulating the cardiac output[13].

As a common underlying thread in the thesis we explore a class of open natural dynami-

cal systems which is utilized for the characterization of various periodic orbits. In order to

understand the response properties of a limit cycle under external parametric perturbation

we have investigated the effect of delay and subharmonic resonances. As the multiple limit

cycles in a given system is an important knotty issue, we have investigated on the counting

of limit cycles and its application in systematic construction of multi-rhythmic oscillators[39,

55, 56] from a simple limit cycle system. In the present thesis entitled, “Characterization Of

Periodic Orbits In Open Nonlinear Dynamical Systems" we have focussed on the following

topics:

Isochronicity and limit cycle oscillation in chemical systems: In order to bypass the exact so-

lution of the nonlinear dynamical systems the general trend is to resort to a geometrical

approach coupled with tools of analysis[3, 57–62]. To deal with the periodic orbits in open

nonlinear dynamical systems one needs to understand the suitability of the various singular

perturbation techniques[3, 57, 63]. They have been proved to be successful tools in finding

approximate solutions to weakly nonlinear differential equations with finite oscillatory pe-

riod. In the perturbative renormalization treatment of dynamical systems the amplitude and

phase of the oscillation get renormalized[35, 45]. When the approximate solution is expressed

in terms of these renormalized amplitude and phase then the perturbative series is uniformly

valid and does not have any secular term[46, 47]. In the traditional RG approach [45] in field

theory the order parameters designated by various coupling constants play similar role as

amplitude and phase in the case of oscillatory dynamical system. RG method also deals

with the problem of isochronous centers characteristic of a family of initial condition depen-

dent periodic orbits[34, 48, 49, 58, 64] surrounding a critical point. Isochronicity is a widely

studied subject not only for its relation with stability theory and bifurcation theory[11, 12,

63, 65] but also in the study of bifurcations of critical points leading to limit cycles[40] and

isochronous systems[48, 58, 64].
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Various kinds of periodic trajectories in phase space can be found and most striking exam-

ple is a limit cycle in the system. A center refers to a family of initial-condition-dependent

periodic orbits surrounding a point. While centers can exist in both linear and nonlinear

systems, limit cycles can occur only in nonlinear systems. The most important kind of limit

cycle is the stable limit cycle where all nearby trajectories spiral towards the isolated orbit.

Existence of a stable limit cycle in a dynamical system means there exists self-sustained oscil-

lation in the system. Dynamical systems capable of having limit cycle oscillations are very im-

portant from the point of view of modelling real-world systems which exhibit self-sustained

oscillations. Some examples of such phenomena from nature include heart beating[66, 67],

oscillations in body temperature[68, 69], random eye movement oscillations during sleep[70],

hormone secretion[71, 72], chemical reactions that oscillate spontaneously[20, 33, 73, 74] etc.

Chemical oscillation[36, 50] is an interesting nonlinear dynamical phenomenon which arises

due to intrinsic instability of the non-equilibrium steady state of a reaction under far away

from equilibrium condition[33]. Experimentally such open systems like, Bray[75, 76], BZ[15,

18–22] and Glycolytic reactions[6, 27, 72, 77–79] are studied extensively in a continuously

flowing stirred tank reactor and the nature of the oscillatory kinetics of two intermediates

gave reliable dynamical models of limit cycle. Although a lot of work has been performed

to explore the ways to determine if a system has a stable limit cycle, surprisingly a little is

known about how to locate this and still it remains a highly active area of research[10, 28,

36, 80]. By casting a class of chemical oscillations usually governed by two-variable kinetic

equations into the form of a Liénard oscillator here we have found the conditions of limit

cycle and isochronicity in a unified way.

When an oscillating center in an open system undergoes power law decay: Dynamical systems[3,

10, 34, 54, 57, 61, 62] capable of having isochronous oscillations[48, 64, 80, 81] are very im-

portant from the point of view of modelling real-world systems[40, 48, 64] which exhibit

self-sustained oscillation[11, 12, 63, 65]. The chemical oscillations[33, 36, 50, 74] are also of

immense importance in biological world to maintain a cyclic steady state e.g., Glycolytic os-

cillations[28, 77–79], Calcium oscillations[52], cell division[82], Circadian oscillation[51, 83]

and others[36]. To obtain the nonlinear dynamical features of a periodic orbit the general

trend is to resort to a geometrical approach coupled with tools of analysis[3, 34, 54, 57, 61,

62]. Recently RG analysis[46, 47] is heavily used to probe the multi-scale oscillation in the

nonlinear system. Here a class of arbitrary autonomous kinetic equations in two variables

are cast into the form of a Liénard–Levinson–Smith (LLS) oscillator[34, 40, 48, 49, 64] char-

acterized by the nonlinear forcing and damping coefficients which can provide a unified

approach to many problems concerning the existence of limit cycle and center. By suitably

adopting K-B averaging method in multi-scale perturbation theory for a periodic system here

we have explored the solution of a class of two variable open systems through LLS form.
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Reduction of kinetic equations to Liénard–Levinson–Smith (LLS) form: counting limit cycles: Vari-

ous open kinetic systems[10–12, 28, 36, 44] in physics, chemistry and biology, are generically

described by a minimal model of autonomous coupled differential equations[3, 34, 54, 59,

60, 84] of two variables. They exhibit self-sustained oscillation in the form of stable limit

cycle in a phase plane in many examples, such as, chemical reactions[15, 36, 40], biological

rhythms[10–12, 55, 56, 85], vibrations in mechanical[86], optical system and musical instru-

ment[10, 17], to name a few. A Rayleigh[17] equation in violin string and Van der Pol oscil-

lation in electric circuit are the classic examples, in this context. More generally, Liénard[10,

39–43] equation underlines the concrete criteria for the existence of at least one limit cycle

for a general class of which covers Van der Pol and Liénard equation is the LLS equation[41–

44], sometimes called the generalised Liénard equation. Casting a general system of kinetic

equations in two variables which describe a variety of scenarios in physical, chemical, bio-

chemical and ecological sciences into LLS form[44] is often not straight-forward[10, 40, 44,

87]. In this context we have presented a scheme to cast a set of a class of coupled nonlinear

equations in two variables into a LLS form so that the later becomes applicable to nonlinear

dynamics of open feedback systems including the the counting problem of number of limit

cycles.

Systematic designing of bi-rhythmic and tri-rhythmic models in families of Van der Pol and Rayleigh

oscillators: Dissipative nonlinear dynamical systems[10, 12, 28, 34, 36, 39, 44, 54] are often

described by minimal models governed by autonomous coupled differential equations[34,

54] which admit of periodic orbits in the form of limit cycles in two-dimensional phase

space[10, 34, 39]. This kind of self-excited periodic motion is generically distinct from the

forced or parametric oscillation[17] and arises as an instability of motion when the dynami-

cal system at a steady state is subjected to a small perturbation. The self-excited oscillation

is well known in heart beat[66, 88], nerve impulse propagation through neurons[31, 32], Cir-

cadian oscillation[51] or sleep-wake cycle, Glycolytic oscillation[6, 78, 79, 87] in controlling

metabolic activity in a living cell and many other biological phenomena[12, 28, 55, 56, 85,

89–92]. Several musical instruments and human voice in acoustics, lasers in radiation-matter

interaction, electrical circuits involving nonlinear vacuum tubes, oscillatory chemical reac-

tions[15, 36, 40] concern self-excited oscillations. Apart from understanding these various

phenomena in terms of the limit cycle solutions of the nonlinear differential equations, self-

excited oscillations are also interesting from the point of view of energetics, as they are not

induced by any external periodic forcing[17, 93]; rather the oscillation itself controls the driv-

ing force to act in phase with velocity. It results a negative damping stuation which acts as

an energy source of oscillation. From the perspective of energetics or thermodynamics, as

emphasized in Ref. [88], it is useful to regard the mathematical limit cycle as representing a

“thermodynamic cycle" in which the thermodynamic state of the system varies in time but

repeats over a cycle after a finite period. This requires an active non-conservative force (effec-
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tively the anti-damping) as well as a load (the nonlinear damping) in the dynamical system.

This aspect of self-oscillation has been successfully utilized to revisit the concept of thermo-

dynamic heat engine in a solar cell[94] and in electron shuttle[95], a model nano-scale system.

It has been shown [16, 40, 87, 96] that for a wide class of kinetic models describing biological

and chemical oscillations in two-dimensional phase space variables can be cast in the form of

either Rayleigh or Van der Pol oscillator or any of their generalizations[16, 40–44, 87, 96, 97].

Both the oscillators, however, can be subsumed into a common form, i.e., LLS oscillator[16,

40–44, 87, 96, 97], so that they can be viewed as the two special cases[96] of LLS system.

While the standard Rayleigh or Van der Pol oscillator allows single limit cycle, because of

polynomial nature of nonlinear damping force and restoring force functions, LLS system

exhibits multi-rhythmicity[98, 99], i.e., one observes the co-existence of multiple limit cycles

in the dynamical system. In some biological systems nature utilizes this multi-rhythmicity

as models of regulation and in various auto-organisation of cell signalling[28, 98–101]. In a

related issue a bi-rhythmic model for Glycolytic oscillation was proposed by Decorly and

Goldbeter[102]. The coupling of two cellular oscillations[99] also leads to multi-rhythmicity.

By extending Van der Pol oscillator Kaiser had suggested a bi-rhythmic model[55, 85] which

has subsequently been used in several occasions[56, 89–92, 103]. As there is no general way

to obtain such multi-rhythmicity, here based on a general scheme of counting limit cycles

of a given LLS equation we have proposed a recipe for systematically designing models of

multi-rhythmicity.

On the suppression of bi-rhythmicity by parametrically modulating nonlinearity in limit cycle sys-

tems: Since Faraday’s observation [104] of parametric oscillations as surface waves in a wine

glass tapped rhythmically, almost two centuries have passed and over the years, it has been

realized that the phenomenon of parametric oscillations is literally omnipresent [53, 105]

in physical, chemical, biological, and engineering systems. Parametric oscillations are essen-

tially effected by periodically varying a parameter of an oscillator which, thus, is aptly called

a parametric oscillator. The simplest textbook example with wide range of practical applica-

tions is the Mathieu oscillator [106] where the natural frequency of a simple harmonic oscil-

lator is varied sinusoidally and the interesting phenomenon of parametric resonance [107] is

observed. The effect of additional nonlinearity in the Mathieu oscillator has also been exten-

sively investigated, e.g, in Mathieu–Duffing [108] and Mathieu–Van der Pol–Duffing [109]

oscillators. However, only rather recently, the effect of periodically modulating the nonlin-

earity in a limit cycle system, viz., Van der Pol oscillator has been investigated [93]. The

resulting parametric oscillator, termed PENVO (parametrically excited nonlinearity in the

Van der Pol oscillator), along with the standard phenomenon of resonance, exhibits the phe-

nomenon of antiresonance that is said to have occurred if there is a decrease in the amplitude

of the limit cycle at a certain frequency of the parametrical drive.
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In the context of the limit cycle oscillations [88], one often comes accross the systems pos-

sessing more than one stable limit cycle. Such multicycle systems are manifested in biochem-

ical processes [6, 78, 110–115]; one of the simplest of them being a multicycle version of the

Van der Pol oscillator [55, 85, 89] modelling some biochemical enzymatic reactions. This oscil-

lator has two stable limit cycles (and an unstable limit cycle between them in the correspond-

ing two-dimensional phase space) owing to the state dependent damping coefficient that

has up to sextic order terms. Consequently, it shows bi-rhythmic behaviour wherein depend-

ing on the initial conditions, the long term asymptotic solution of the oscillator corresponds

to one of the stable limit cycles that have, in general, different frequencies and amplitudes.

Needless to say, bi-rhythmicity is a widely found phenomenon across disciplines—and not

only in biochemical processes—because so are the ubiquitous limit cycle oscillations. How to

control bi-rhythmicity in a nonlinear system is interesting as a nonlinear phenomenon. Here

we have illustrated that the bi-rhythmicity seen in the delayed Van der Pol oscillator and its

modified version, the Kaiser oscillator to include higher order nonlinear damping, can be

suppressed if the nonlinear terms of the oscillators are periodically modulated.

1.2 scope of the thesis

Although the scope of the work on the characterization of periodic orbits in open nonlin-

ear dynamical system is a very broad, here we shall confine ourselves within the limit of

a few aspects of such types of motion. Dynamical systems are usually described by ODEs

or partial differential equations but more general dynamical systems, such as, maps, delay

equations, stochastic differential equations, etc. are also considered. A nonlinear system is

a system that does not satisfy the superposition principle. Most importantly, nonlinear sys-

tems may contain multiple attractors, each with its own basin of attraction. Thus the fate

of a nonlinear dynamical system may depend on its initial state and a whole new set of

phenomena arises associated with the way in which basins of attraction shift as parameters

are varied. Nonlinearity can also give rise to an entirely new types of attractors, for exam-

ple, Lorenz and Rössler attractors etc[10]. Limit cycles in nonlinear systems may be quite

complicated, circling around in a bounded region of state space many times before finally

closing on themselves. It is even possible and quite common for a trajectory to be confined

to a region of state space where there are no stable limit cycle or fixed point. For nonlinear

systems multiple solutions can exist which are visited through bifurcations when a parame-

ter of the system is varied and can lead to interesting phenomena such as chaos. Dynamical

systems can model an incredible range of behaviour such as the motion of planets in the

solar systems, the way diseases spread in a population, the shape and growth of plants, the

interaction of optical pulses, or the processes that regulate electronic circuits and heart beats.
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To put our work in the proper perspective here we have made a brief survey of the literature

of the dynamical systems, specially on the limit cycle and other periodic orbits of nonlin-

ear systems and their analysis through multi-scale perturbation theories along with probing

them with the parametric excitation.

French mathematician Henri Poincaré is the founder of the modern, qualitative theory of

dynamical systems. Poincaré published two classical monographs,“New Methods of Celes-

tial Mechanics" (1892–1899)[1] and “Lectures on Celestial Mechanics" (1905–1910)[2] where

he successfully applied the results of their research to the problem of the motion of three

bodies and studied in detail the behaviour of solutions (frequency, stability, asymptotic, and

so on). In 1913, G. D. Birkhoff proved Poincaré’s “Last Geometric Theorem", a special case

of the three body problem, followed by his book named “Dynamical Systems"[3]. The name

of the subject “Dynamical Systems", came from the title of that classic book. Poincaré recur-

rence theorem states that certain systems will, after a sufficiently long but finite time, return

to a state very close to the initial state. He recognized that even differential equations can

be viewed as a discrete time systems by strobing, i.e. only recording the solution at a set of

discrete times, or by Poincaré section. Aleksandr Lyapunov developed many important ap-

proximation methods among which he developed the theory of dynamical stability in 1899

which make it possible to define the stability of sets of ODEs. Smale[60] made significant

advances as well. His contribution in the Smale horseshoe has jump-started significant re-

search in dynamical systems. On the periods of discrete dynamical systems Sharkovsky[116]

in 1964 implies that if a discrete dynamical system on the real line has a periodic point of

period 3, then it must have periodic points of every other period. In the late 20
th century,

Palestinian mechanical engineer Nayfeh applied nonlinear dynamics in mechanical and engi-

neering systems[53] pioneered the work in applied nonlinear dynamics, in the construction

and maintenance of machines and structures that are common in daily life, such as ships,

cranes, bridges, buildings, skyscrapers, jet engines, rocket engines, aircraft and spacecraft.

Bifurcation theory considers a structure in phase space (typically a fixed point, a periodic

orbit, or an invariant torus) and studies its behaviour as a function of the bifurcation param-

eter. At the bifurcation point the structure may change its stability, split into new structures,

or merge with other structures. By using Taylor series approximations of the maps and an

understanding of the differences that may be eliminated by a change of coordinates, it is pos-

sible to catalogue the bifurcations of dynamical systems. The Hopf bifurcation theorem has

great applications to nonlinear oscillations in circuits and systems[117], for example, non-

linear oscillations of a cantilever tube carrying an incompressible fluid by Bajaj et al.[118],

bifurcation appearing in fluid mechanics by Kloeden et al.[119], periodic solutions of second

order autonomous ODE by Sabatini[120] and Swift[121] with the symmetry of the square. Li

et al.[122] have studied Zero-Hopf bifurcation and Hopf bifurcation and the distribution of

the equilibrium points of the modified Chua system[123].
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Limit cycling phenomena[124] can be observed in many electrochemical and mechanical

systems, in predator-prey communities[125], in controlling the multiplicity of limit cycles

near Hopf bifurcation[126], uniqueness and non-existence of limit cycles[127, 128]. Bifurca-

tion analysis are studied with harmonic balance[129], co-dim 1 bifurcation[130] along with

the the stability of limit cycles in hybrid systems[131]. Gérard and Goldbeter[132] have

shown that the cell cycle (mammalian) behaves as a limit cycle oscillator. Limit cycle in

presence of noise are also studied in Ref. [133], the entrainment of noise induced limit cycle

oscillator[134] both for additive and multiplicative noise and robustness of periodic orbits

in the presence of noise[135]. Recently, the limit cycle has been the central issue in precision

control designs as the need of precision positioning systems becomes unavoidable[136–138].

Functional analysis[139] is reported in analyzing the limit cycles in nonlinear systems and

Floquet theory[140] and contraction analysis is reviewed for synchronization and coordina-

tion of coupled oscillators.

Initial works in the area of isochronous oscillators are traced back to Galileo Galilei and

Christian Huygens[141]. They investigated the problem of achieving perfect isochronicity

and showed that it can be realized in a simple pendulum that wraps around the cycloid[142].

More recent investigations of isochronicity have been directed towards nonlinear oscillators,

by Gasull et al.[143] studied the center and isochronicity conditions for systems with homo-

geneous nonlinearities. Some Liénard-type equations are found to exhibit the isochronicity

characteristic is also analyzed in some cases by Sabatini[144]. Necessary and sufficient math-

ematical conditions are analyzed by Christopher et al.[145], Chandrasekar et al.[146, 147]for

the isochronicity of the differential equation. Sabatini[148] studied the analogous equation

and later in Refs. [149–152]. Isochronicity of centers are also studied in Refs. [153, 154]. For

mechanical oscillators[155] including homogeneous systems, and hamiltonian systems[156–

158] isochronous center has been carried out.

A new technique to manufacture isochronous hamiltonian systems has been introduced

by Calogero et al.[159–162]. They also introduced a new class of isochronous dynamical

systems[163] to describe chemical reactions[164] also the isochronous oscillators as well as

isochronous dynamical systems. Methods to extend any dynamical system such that it be-

comes isochronous or asymptotically isochronous or multi-periodic have been shown by

them later[165]. In a recent investigation, Sarker et al.[49] have shown that RG technique can

be considered as a probe for center or limit cycle through amplitude and phase equation.

It has a non-trivial ability of classifying the solutions into limit cycles and periodic orbits

surrounding a center. They also showed that the methodology has a definite advantage over

linear stability analysis in analyzing centers as well as isochronous orbits. Later Sarkar et

al.[166] studied the condition of isochronicity for two-dimensional systems in the RG con-

text where they found a necessary condition for the isochronicity of the Cherkas system[167]

and another class of cubic system.
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The uniqueness and existence of periodic solutions of the Liénard equation[40–44] has

been analyzed by Staude[168] in a detailed manner. Poincaré–Bendixson domain has been

constructed to prove the existence of at least one periodic solution. Liénard condition, a suf-

ficient condition for the existence of a stable limit cycle for a second order equation has been

studied by Filippov[169]. The qualitative behaviour of solutions[170] of Liénard equation,

Lloyd[171] described in his paper that there is an extensive literature on Liénard’s equation

ẍ + f (x ) ẋ + g(x ) = 0 and numerous criteria for the existence of limit cycles have been de-

veloped, in the survey of Staude[168], for example. Uniqueness of limit cycles for a class of

Liénard systems and with applications has been studied in Ref. [172–175]. Sabatini et al.[176]

studied limit cycle’s uniqueness for a class of generalized Liénard systems and Hayashi[177]

has discussed the non-existence of limit cycles of a Liénard system. An application to the

Schnakenberg model[16] of an autocatalytic chemical reaction is given in Ref. [178]. A de-

tailed study of the dynamics of a Liénard System has been done by Velez et al.[179], Rude-

nok[180] for the generalized symmetry of the Liénard system and by Kukles[181] in the

generalized symmetry method.

The first observation of an oscillating chemical reaction in solution phase was made in

1921 by Bray[75], who reported periodic variations in iodine concentrations during decom-

position of hydrogen peroxide catalyzed by the iodate ion. The scientific community consid-

ered this behaviour as contradicting the second law of thermodynamics and attributed the

oscillations to unknown impurities. Prior to about 1920, oscillations in closed homogeneous

systems were considered impossible. A crucial discovery was made by the Russian chemist,

Belousov[18] in the year 1951, which led the way towards the future development of nonlin-

ear dynamics in chemistry. He observed oscillation of the solution color during the oxidation

of citric acid by bromate catalyzed by ceric ions. The final chapter of this story was written

by Anatol Zhabotinsky[182] and his first paper on chemical oscillations to the Russian jour-

nal Biofizika[183]. After understanding the principal mechanism of this oscillating reaction

[184], Zhabotinsky switched his attention to produce chemical waves and it remains a useful

tool in many scientific fields, from nonlinear kinetic theory to biological disciplines.

Oscillating chemical reactions and nonlinear dynamics have extensively been studied by

R. J. Field, R. M. Noyes, F. W. Schneider, I. R. Epstein and other scientists[20, 185–189]. De-

spite the theoretical work of Prigogine[5] about oscillations in far from equilibrium systems

(1955), the myth that chemical oscillations in homogeneous systems were impossible, because

they contradict the second law of thermodynamics, persisted until the mid-1960s (which

Zhabotinsky calls the Dark Age). In the year of 1973, Nicolis et al.[190] reported a detailed

review containing a synthetic view of the mathematical, thermodynamical, and purely ki-

netic or experimental work on chemical oscillations[185, 186, 191] which is one of the most

spectacular in elementary chemical oscillators [18, 21, 83, 188, 192–195], Continuous Stirred

Tank Reactor (CSTR)[36, 50, 196] etc. A general survey of the chemistry and phenomenology
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of the principal chemical oscillations is followed by a discussion of the situations leading

to periodic reactions on the basis of the multi-variable kinetics of feedback systems carried

out by Franck[197]. In 1996, Epstein et al.[198] discussed about nonlinear chemical dynamics

where chemical reactions with nonlinear kinetic behaviour, including periodic and chaotic

changes in concentration, travelling waves of chemical reactivity, and stationary spatial (Tur-

ing) patterns.The topics of chemical oscillations, waves, and turbulence is discussed in detail

by Kuramoto[74] in his book.

Most nonlinear dynamical systems are handled by various perturbative approaches or

asymptotic analysis[3, 57–62]. where the perturbation theory usually confers to a collection

of iterative methods for the systematic analysis of global behaviour of differential equations.

To deal with non-convergence[3, 57, 63] of the series, multi-scale analysis appears in almost

every field of science such as fluid dynamics[199, 200], hydrodynamics [201], mechanics[202],

cosmologies with nonlinear structure[203]. Geometric singular perturbation theory for ODEs

has been described by Fenichel[204]. Ikegami[205] has discussed geometric singular pertur-

bation theory for electrical circuits. Omohundro[206] investigated the hamiltonian structure

of the various perturbation theories used in practice by describing the geometry of a hamil-

tonian structure for non-singular perturbation theory applied to hamiltonian systems on

symplectic manifolds and the connection with singular perturbation techniques based on

the method of averaging. Perturbation theory of smooth invariant tori of dynamical systems

is discussed by Samoilenko[207]. A singularly perturbed planar system of differential equa-

tions modelling an autocatalytic chemical reaction is studied by Gucwa et al.[208] which

has a limit cycle where geometric singular perturbation theory is used to prove the exis-

tence of this limit cycle. Singular perturbations in noisy dynamical systems has reported by

Matkowsky[209]. Perturbation around exact solutions for nonlinear dynamical systems and

application to the perturbed Burgers equation is discussed by Irac-Astaud[210]. Conserva-

tive perturbation theory for non-conservative systems has been studied by Shah et al.[211]

to show how to use canonical perturbation theory for dissipative dynamical systems capable

of showing limit cycle oscillations. A detailed survey regarding the perturbation theory in

dynamical systems along with various methods have been discussed in Ref. [212, 213].

The phenomenon of parametric instability is frequently encountered in mechanics as well

as in various areas of physics. Faraday[104] was one of the first to observe the phenomenon

of parametric resonance noting that surface waves in a fluid-filled cylinder under vertical

excitation exhibited twice the period of the excitation. Melde [214] was the first to observe it

in structural dynamics. Oscillations of a pendulum under parametric excitation was studied

by Struble[215]. In 1968, Mathieu[106, 216, 217] observed a phenomenon similar to the one

studied by Melde [214] while he was investigating the vibrations of an elliptical membrane

by separation of variables when he presented the simplest differential equation that governs

the response of many systems to sinusoidal parametric excitation. The chaotic behaviour of a
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parametrically excited system is studied in some detail by Ariaratnam et al.[218]. Damping of

parametrically excited single degree of freedom systems has been studied by Asfar et al.[219].

Blankenship et al.[220] have studied steady state forced response of a mechanical oscillator

with combined parametric excitation. Study of parametric excitation in nonlinear dynamical

systems using both the harmonic balance method and the normal form method of averaging

has been studied by Bakri et al.[221], where they observed Neimark-Sacker bifurcation[10].

Billah[222] provided the definition of parametric excitation for vibration problems where

he classified the difference between periodic variation of all parameters of a mechanical

system with parametric excitation. Parametric excitation in coupled waves has been stud-

ied by Nishikawa[223, 224] by considering a common parametrical coupling between two

identical linear oscillators[225, 226]. Also, parametric excitation has been studied in other

areas like evolutionary dynamics[227], optomechanical resonators[228], electromechanical

systems[229], electrostatically driven micro-electro-mechanical (MEM) oscillators[230], two

degree of freedom MEMS system[231], and many others for example in hamiltonian ap-

proach by Leroy et al.[232], theory of parametrically excited linear discrete systems[53].

Keeping this background literature in view in the context of Liénard equation which we

have specifically used in the study of nonlinear dynamical properties of an open system and

it is shown to obtain the condition of limit cycle. In conjunction with the property of limit

cycle oscillation, here we have shown the condition for isochronicity for different chemical

oscillators with the help of RG method with multiple time scale analysis from a Liénard

system. When two variable open system of equations are transformed into a Liénard system

we have raised the question about how the condition for limit cycle and isochronicity can be

shown in a unified way.

Then, we have probed the condition of periodic oscillation in a class of two variable nonlin-

ear dynamical open systems modeled with LLS equation which can be a limit cycle, center or

a very slowly decaying center-type oscillation. Using a variety of examples of open systems

like chemical oscillation, population dynamics, optical oscillation in laser and a time delayed

nonlinear feedback oscillation as a non-autonomous system, as well as a family of periodic

orbits which can be captured in the purview of LLS systems. In terms of a multi-scale per-

turbation theory, it is utilized to characterize the size and shape of the limit cycle and center

as well as the approach to their steady state dynamics.

To cover the case of open chemical oscillations along with Van der pol and Rayleigh sys-

tems, we have presented an unified scheme to express a class of system of equations into a

LLS equation. We have derived the condition for limit cycle with special reference to Rayleigh

and Liénard systems for arbitrary polynomial functions of damping and restoring force. We

have shown how a simple multi-scale method can be implemented to determine the maxi-

mum number of limit cycles.
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Based on such method an algorithm for finding out maximum number of limit cycles

possible for a class of LLS oscillator, one can explore a new methodology for computation

of system of oscillator with a desired number of limit cycles. For explicit elucidation of

real chemical and physical system one needs to develop numerical approach for systematic

searching of the parameter space for bi-rhythmic and tri-rhythmic systems and their higher

order variants.

One can also characterize limit cycle through the parametric excitation as parametrically

excited system is prepared by time-varying coefficients of the equations of motion. Paramet-

ric excitation of a system differs from direct forcing as in the former case fluctuations appear

as temporal modulation of a parameter rather than as a direct additive term. A common

paradigm is that of a pendulum hanging under gravity whose support is subjected to a ver-

tical sinusoidal displacement. In the context of parametric excitation of limit cycle system,

there has been no investigation into the control of multi-rhythmicity in a parametric oscilla-

tor whose parameter is varied. One should note that periodic variation of such a parameter

is understandable [233]. In this context, we used the parametrical excitation phenomenon in

some nonlinear time delayed systems where the frequency of parametric excitation is twice

that of the natural frequency of the unforced system.

1.3 plan of the thesis

Layout of the thesis is as follows:

In chapter 2, we have provided a brief review of the background concepts frequently

used in the main text. In the overview we have started from a brief introduction on Rayleigh

oscillator and chemical oscillation with their non dimensional mathematical modelling. Then

we have provided the basic physical overview of Hopf bifurcation and a short introduction

about limit cycle along with a physical example with considering a λ − ω form. A general

concept for isochronicity is reviewed. Various perturbative methods such as regular as well as

multi-scale perturbative methods are discussed there. The concept of approximate analytical

solutions using various methods are shown where in all methods the Van der Pol—Duffing

oscillator is considered as a typical example for illustration. The classification of periodic

orbits using perturbative methods is also discussed.

In chapter1
3, we have briefly reviewed the method of reduction of kinetic equation into

Liénard form to find the condition for limit cycle. Isochronicity for various Liénard system

is described such as modified Brusselator model, Glycolytic oscillator and Van der Pol type

oscillator.

1 Some portion of this chapter is published in the J. Math. Chem.-Saha et al. (2017)

13



In chapter2
4, we have formulated the problem in terms of Liénard–Levinson–Smith (LLS)

equation with taking examples of various systems and studied the dynamical consequences

of limit cycle, center and slowly decaying center-type oscillations in Glycolytic oscillator,

Lotka-Volterra model, Van der Pol type oscillator and a time delayed nonlinear feedback

oscillator. There, we have explored the source of power law decay of the center under certain

perturbation.

In chapter3
5, the problem has been formulated in terms of Liénard–Levinson–Smith (LLS)

oscillator to apply perturbation theory where a more compact version is provided to the

reduction of kinetic equations to LLS form. Perturbation theory is applied to find maximum

number of limit cycles for a LLS system and we have reviewed various model system starting

from one cycle cases to multicycle cases.

In chapter4
6, the counting of number of limit cycles for polynomial damping and restoring

force functions of a Liénard–Levinson–Smith (LLS) system is revisited. The generalisation of

single-cycle oscillator to multicycle cases is discussed by reviewing various model systems

through the classification of two families — Van der Pol and Rayleigh family of oscillators.

Construction of new families of Van der Pol and Rayleigh oscillators with multiple limit

cycles (such as bi-rhythmic and tri-rhythmic) and their alternative forms are discussed. Bi-

rhythmicity apart from LLS system is also discussed.

In chapter5
7, we have discussed the presence of time delayed feedback affects the features

of resonance and the antiresonance in the parametrically excited Van der Pol oscillator. Fur-

thermore, we have shown how the resulting bi-rhythmicity therein is suppressed by tuning

the strength of the periodic modulation. Subsequently, we consider multicycle Van der Pol

oscillator whose nonlinearity parameter is sinusoidally varying and we have shown the way

to control bi-rhythmicity in this system as well.

2 Some portion of this chapter is published in the J. Math. Chem.-Saha et al. (2018)
3 Some portion of this chapter is published in the Int. J. Appl. Comp. Math.-Saha et al. (2019)
4 Some portion of this chapter is published in Communications in Nonlinear Science and Numerical Simulation -

Saha et al. (2020)
5 Some portion of this chapter is submitted-Saha et al.(submitted) [arXiv:2007.14883]
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2
O V E RV I E W O F P E R I O D I C S Y S T E M S A N D P E RT U R B AT I V E

M E T H O D S

2.1 introduction

Here we have provided the background concepts and methods on periodic orbits in nonlin-

ear dynamical systems, starting from a brief introduction on Rayleigh oscillator in section

2.2 along with chemical oscillation and their mathematical modelling (in section 2.3). Then

we have provided the basic overview of Hopf bifurcation in section 2.4. A short introduction

about limit cycle along with a physical example by considering a λ − ω system is given in

section 2.5. In section 2.6, a general concept for isochronicity is reviewed. Various pertur-

bative methods such as regular as well as multi-scale perturbative methods are discussed

in section 2.7 and section 2.8, respectively. The concept of approximate analytical solutions

using various multi-scale perturbative methods are shown in section 2.9. In section 2.10,

the Van der Pol—Duffing oscillator in the form of a λ − ω system is shown. Finally, the

classification of periodic orbits using perturbative method is discussed in section 2.11.

2.2 rayleigh oscillator

Since Rayleigh oscillator is an well studied topic about the vibration of string and various

musical instruments it has been described in detail[8, 29] in the literature and here we give

only a brief representation of the model to elucidate the physical essence and origin of it.

Rayleigh[8] examined the problem in the context where a system with friction which is

supported by an internal energy source and the force with which this source acts on the

oscillating object is assumed to be small. Thus although the dissipative part is nonlinear in

the variables, displacement, ξ and velocity, ξ̇ , restoring force is linear in displacement. Then,

the equations of motion generally can be written as

m ξ̈ (t) = −a0 ξ̇ (t) − a1 ξ (t) + a2 ξ̇ (t) , (2.1)
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where a0 is the coefficient of linear friction, a1 is the coefficient of elasticity, and a2 is the

coefficient of the velocity-dependent force component. Physically, the last term on the right-

hand side of Eq. (2.1) corresponds to the force that is almost suddenly impacted to excite the

system by a fast transfer of additional momentum to it. This force is designed by Rayleigh

through his innate perception of the workings of the musical instruments which naturally

arise in some techniques of eliciting sounds from instruments or in a manner for the cyclical

operation of a clock. The solution of linear equation for a2 > a0 grows exponentially with

time, and at a certain time the velocity becomes large, which means, the first term on the

right-hand side of Eq. (2.1) is added by a term containing the velocity to the next power,

which is directed opposite to the velocity, i.e., proportional to ξ̇ 3.

Thus the Rayleigh equation is intuitively introduced in the form

ξ̈ (t) + αξ̇ (t) + α
′
ξ̇ 3 + ω2 ξ = 0, (2.2)

where the redefined parameters are α = (a2 − a0 )/m, and ω2 = a1/m as well as a new one,

α
′

.

For this unusual nature of nonlinear damping term, in Eq. (2.2), Rayleigh showed that

in this system stationary oscillations can be found if α and α
′

have opposite signs. In this

case, if α is negative and α
′

is positive, then that oscillation is stable. Rayleigh also estimated

the radius of the self-sustained cirular orbit of stable oscillation for the steady state motion

which is presently called a limit cycle. He had also found an approximate solution to Eq. (2.2)

with an accuracy to the third order. This basic Rayleigh oscillator is further generalized in

several other situations by Van der Pol, Andronov, Liénard, Levinson, Smith and others[10,

15, 34, 41–44, 53, 54].

2.3 chemical oscillation

A chemical oscillating reaction is a complex mixture of reacting chemical compounds in

which concentration of one or more compounds exhibits periodic changes or where sudden

changes of properties occur after a predictable induction time[5, 33, 36, 50, 183]. They are a

class of reactions which serves as examples of non-equilibrium thermodynamics, resulting

the establishment of nonlinear oscillator[34–36].

It is an interesting nonlinear dynamical phenomenon which arises due to intrinsic insta-

bility of non equilibrium steady state of reaction under far from equilibrium condition. The

self-sustained and resilient chemical oscillation are common in bio-system as they lie at the

heart of all biorhythms, as for example, Glycolytic oscillator[6, 27, 28], Brusselator models[5,

33], Circadian oscillation[51, 83] etc. In the earliest 19 th century, G. T. Fechner published
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a report of oscillation in a chemical system about an electrochemical cell that produced an

oscillating current in the year of 1828[36, 187].

The BZ reaction is one of several oscillating chemical system whose common element is

the inclusion of bromine and malonic acid[15, 18–23]. Over a period of last three decades

chemical oscillation has proved itself to be a new area of investigation in nonlinear dynam-

ics. The mechanism for this reaction is very complex and is thought to involve around 18

different steps which have been the subject of a number of research papers[18, 19]. Two key

processes both of which are auto-catalytic occur where process A generates bromine, giv-

ing the red colour, and process B consumes the bromine to give bromide ions. One of the

most common variations on this reaction uses malonic acid (C H2 (CO2 H )2 ) as the acid and

potassium bromate (K BrO3 ) as the source of bromine. The overall equation is:

3C H2 (CO2 H )2 + 4BrO−3 → 4Br− + 9CO2 + 6 H2O .

Oscillatory chemical reactions[20, 33, 73, 74] are best treated through a dynamical feedback

system by a Prigogine and Lefevre[5] called Brusselator which is the model chemical reaction

of the transformation of the substrates, A and B into products C and D, namely

A + B → C + D ,

as a reaction with steps:

A
k1 X

2 X
k2

3 X

B + Y
k3

Y + C

X
k4

D. (2.3)

The most non-trivial step in the Brusselator model (2.3) is the utilization of intermediate

substances X and Y satisfying a tri-molecular reaction, which ensures the existence of an

oscillatory regime. Considering the substrates to be in excess and the rate constants are

equal to unity, the dynamics of the concentrations of the intermediate species is described

by equations:

dx
dt

= a + x2y− (b + 1)x,

dy
dt

= bx− x2y, (2.4)

where x and y are the dimensionless concentrations with a and b are the dimensionless

parameters of the reaction.
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2.4 hopf bifurcation

In the mathematical theory of bifurcations, a Hopf bifurcation also known as a Poincaré–

Andronov–Hopf bifurcation[234–236] is one of the most powerful methods for studying pe-

riodic solutions as a critical point where a system’s stability switches and either a periodic

solution arises or a periodic solution looses its stability. More accurately, it is a local bifur-

cation in which a fixed point of a dynamical system looses stability, as a pair of complex

conjugate eigenvalues cross the imaginary axis in the complex plane where the eigenvalues

are calculated by linearizing the system around the fixed point. So, for a differential equa-

tion a Hopf bifurcation typically occurs when a complex conjugate pair of eigenvalues of the

linearized flow at a fixed point becomes purely imaginary. When the real parts of the eigen-

values are negative the fixed point is called a stable focus. When they cross zero and become

positive, the fixed point becomes an unstable focus and then the orbit will be spiralling out.

But this change of stability is a local change and the phase portrait sufficiently far from the

fixed point will be qualitatively unaffected. Note that the Hopf bifurcation can only appear

in such systems of dimension two or higher.

Consider a two-dimensional planar system,

ẋ = f (x, y; σ),

ẏ = g(x, y; σ), (2.5)

where “σ” is a parameter. Suppose that the considered system has a fixed point, say (x, y) =

(x0, y0), which may depend on σ. The eigenvalues of the linearized system can be calculated

by the Jacobian matrix about the fixed point and suppose that the eigenvalues at the specific

fixed point, (x0, y0), are λ1,2(σ) = α(σ)± iβ(σ). In the theory of dynamical systems, if α(σ0) < 0

then the system will be asymptotically stable and unstable if α(σ0) > 0. So, if α(σ) = 0 at a

critical value of σ = σ0 then σ be the bifurcating parameter. To have a Hopf bifurcation, the

following conditions have to satisfy are,

1. Non-hyperbolicity condition (conjugate pair of imaginary eigenvalues):

α(σ0) = 0, β(σ0) = ω 6= 0, where sign(ω) = sign [(∂g/∂x)|σ=σ0(x0, y0)]

2. Transversality condition (i.e. the eigenvalues cross the imaginary axis with non-zero

speed):
dα(σ)

dσ |σ=σ0= δ 6= 0
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3. Genericity condition:

Γ =
1
16

( fxxx + fxyy + gxxy + gyyy)

+
1

16ω

(
fxy( fxx + fyy)− gxy(gxx + gyy)− fxxgxx + fyygyy

)
6= 0, (2.6)

fxy = (∂2 f /∂x∂y)|σ=σ0(x0, y0), . . .

An unique curve of periodic solutions bifurcates from the origin into the region σ > σ0 for

Γδ < 0 or σ < σ0 for Γδ > 0. The origin is a stable fixed point for σ− σ0 > 0 (σ− σ0 < 0 )

and an unstable fixed point for σ− σ0 < 0 (σ− σ0 > 0) if δ < 0 (δ > 0) whilst the periodic

solutions are stable (unstable) if the origin is unstable (stable) on the side of σ = σ0 where

the periodic solutions exist. So, for an unstable fixed point the amplitude of the periodic

orbits may exist and grows like
√
|(σ− σ0)| until their periods tend to 2π/|ω| as σ tends to

σ0. The bifurcation is called supercritical if the bifurcating periodic solutions are stable, and

subcritical if they are unstable.

This two-dimensional version of the Hopf bifurcation theorem was known to Andronov et

al.[237] from around 1930, and had been suggested by Poincaré[238] in the early 1890s. Hopf

[239], in 1942, proved the result for arbitrary (finite) dimensions. He showed that oscillations

near an equilibrium point can be understood by looking at the eigenvalues of the linearized

equations for perturbations from equilibrium, and at certain crucial derivatives of the equa-

tions. Note that the above conditions for Hopf bifurcation are defined locally around the

fixed point (x0, y0) which implies that Hopf bifurcation is a local bifurcation. Sometimes the

explained conditions failed to provide the system behaviour before or after bifurcation due

to higher order nonlinearities and then the concept of central manifold and normal form

theory come to fix that kind of specific problems[240]. It also helps us to reduce a higher-

dimensional nonlinear systems to a planar one which is essentially provides that apart from

the two purely imaginary eigenvalues no other eigenvalues have zero real part[235, 240].

The center manifold theorem is predominantly a model reduction technique for determin-

ing the local asymptotic stability of an equilibrium of a dynamical system when its linear

part is not hyperbolic. The overall system is asymptotically stable if and only if the center

manifold dynamics is asymptotically stable. This allows for a substantial reduction in the

dimension of the system whose asymptotic stability must be checked. In fact, the center

manifold theorem is used to reduce the system from N-dimensions to 2-dimensions [240].

Moreover, the Center manifold and its dynamics need not be computed exactly; frequently, a

low degree approximation is sufficient to determine its stability. Extensions exist to infinite-

dimensional problems such as differential delay equations and certain classes of partial dif-

ferential equations (including the Navier-Stokes equations)[235]. This is some times called

Naimark-Sacker bifurcation[235, 241, 242].
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2.5 limit cycle

Limit cycle is an isolated closed trajectory in phase space exhibited by two-dimensional

dynamical systems. As dynamical system evolves, its neighbouring trajectories may either

spiral towards or move away from it. If all the neighbouring trajectories move towards the

closed trajectory, then the orbit is called a stable limit cycle attractor or periodic attractor and

an infinite subset of initial conditions would be drawn to the attractor i.e. a limit cycle attrac-

tor is independent of initial condition which constitutes the basin of attraction. On the other

hand, an unstable limit cycle (or repeller), is one for which the trajectories are beginning near

and will escape away from it towards some neighbouring stable limit cycle attractor or will

collapse on some neighbouring stable fixed point. Stable limit cycle implies self-sustained

oscillations of a system where the closed trajectory describes perfect periodic behaviour

of the system. Any small perturbation from this closed trajectory causes the system to re-

turn to it, making the system stick to the limit cycle. The “Poincaré–Bendixson" theorem

and “Bendixson–Dulac" theorem predicts the existence of limit cycles for two-dimensional

nonlinear systems. The number of limit cycles of a homogeneous polynomial differential

equation is the main object of the second part of Hilbert’s 16th problem[243].

There are different types of limit cycle oscillations where on the trajectory for which energy

of the system would be constant over a cycle i.e. on an average there is no gain or loss of en-

ergy. For two-dimensional systems, in general, the limit cycle appears because of the delicate

balance of the gain and loss of energy through the nonlinear damping terms corresponding

to the nonlinear interaction of the phase space variables. However, some times linear systems

under memory effects can provide a similar scenario that produces limit cycles[244].

2.5.1 Limit cycle as λ−ω system

Limit cycle as λ − ω system is a class of simple reaction-diffusion equations with a limit

cycle in the reaction kinetics system was first introduced by Kopell and Howard[192, 245,

246] to describe a class of examples which appears to exhibit travelling wave phenomena.

Later Greenberg[247, 248] showed that asymptotic expansions for spiral waves for λ − ω

systems are valid on some specific interval and Ermentrout[249] used it to have stable small-

amplitude solutions in reaction-diffusion systems and also Sherratt[250] used to have the

evolution of periodic plane waves in reaction-diffusion systems of λ−ω type.

The governing reaction kinetic equations (without diffusion) for λ−ω system are:

dx
dt

= λ(r)x−ω(r)y,

dy
dt

= ω(r)x + λ(r)y; r =
√

x2 + y2. (2.7)
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For a coordinate transformation from cartesian to polar with ((x, y)→ (r, φ)) s.t. (x, y) =

(r cos φ, r sin φ) with (r, φ) =
(√

x2 + y2, tan−1 y
x

)
we have

dr
dt

= rλ(r),

dφ

dt
= ω(r). (2.8)

The non-zero root(s), say, r = R, of the amplitude equation confirms the existence of limit

cycle(s). The phase solution will be then φ = φ0 + ω(R)t of frequency ω(R).

Example 2.5.1. Hopf bifurcation and limit cycle in λ−ω system:

Hopf bifurcation and limit cycle can be described by a pair of equations as λ − ω. For

illustration, choosing λ(r) = γ− r2 and ω(r) = 1 in the λ− ω system the reaction dynamics

can be written as,

dx
dt

= (γ− (x2 + y2))x− y,

dy
dt

= x + (γ− (x2 + y2))y. (2.9)

It has a stationary point at (x, y) = (0, 0). The form of the above oscillator is very useful to

have a stable limit cycle attractor. A wide class of studies have been performed by using

the described system in presence or absence of diffusion. If the reaction kinetics is stable

limit cycle in nature, then addition of diffusion, provokes the system to provide pattern

formation or if the reaction kinetics itself shows up periodic behaviour, then adding diffusion

is expected to generate travelling periodic wave-train solution.

So, the characteristic polynomial of the above system at (0, 0) is 1 + (γ− K)2 = 0 and that

implies K1,2 = γ± i. Then the fixed point becomes stable for γ < 0 and unstable for γ > 0 that

means γ is a Hopf bifurcation parameter which bifurcates at γ = γc = 0 and the eigenvalues

are ±i satisfying the standard Hopf bifurcation requirement. We have ω = 1, δ = 1 and Γ =

−1, so the bifurcation is supercritical and there is a stable isolated periodic orbit (limit cycle)

if γ > 0 for each sufficiently small γ. Thus for γ = γc + ε with 0 < ε� 1, limit cycle solution

with small amplitude can be expected.

2.5.2 Liénard system

The Liénard equation is specifically based on the study of nonlinear dynamical systems and

ordinary differential equation (ODE), is a special polynomial form of second order ODE,

named by the French physicist Alfred–Marie Liénard[41]. It is a initial value problem and

it has a lot of applications all over the physical world. During the development of radio
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and vacuum tube technology, it is intensely studied as it can be used to model oscillating

circuits. Liénard described a theorem which was published in 1928 where under certain

additional assumptions, Liénard system guarantees the uniqueness and existence of a limit

cycle[41]. Let f and g be two continuously differentiable functions, then the second order

ODE, ẍ + f (x)ẋ + g(x) = 0, is called a Liénard equation, where x(t) and the functions f and g

satisfying to be an even and odd functions are given below:

1. x g(x) > 0 for |x| > 0,

2.
∫ +∞

0 g(x)dx =
∫ −∞

0 g(x)dx = ∞,

3. There exists some x0 > 0 such that f (x, v) ≥ 0 for |x| ≥ x0,

4. There exists an A such that for |x| ≤ x0, f (x, v) ≥ −A and

5. There exists some |x1| > x0 such that
∫ x1

x0
f (x, v)dx ≥ 10 A x0, where v > 0 is an

arbitrary decreasing positive function of x,

A special form of Liénard equation[41] is, ẍ + µ(x2 − 1)ẋ + x = 0, is called the Van der Pol

oscillator, is named by an Dutch electrical engineer Balthasar Van der Pol(1889-1959), started

his investigation in 1926 and studied version with periodic terms, where chaotic motion can

occur[10, 14]. Liénard system also can be solved by Differential Transform method based on

the Taylor series expansion by constructing an analytical solution in the form of a polyno-

mial. After that, in the year of 1942, Levinson–Smith modified the Liénard form of equation

and wrote the modified version as, ẍ + f (x, ẋ)ẋ + g(x) = 0, known as Levinson–Smith or

Liénard–Levinson–Smith (LLS) type oscillatory equation as a generalisation of Liénard oscil-

lator through the damping force function[42, 43]. The property of f and g are the same as

described previously. Here we have dealt this type of more general and advanced Liénard

equation[41–44]. The Liénard equation where g(x) is a cubic polynomial has been used to

describe isotropic turbulence[251]. It is clearly by the pressure of “Nonlinear Damping" co-

efficient f (x, ẋ), which depending on the amplitude of oscillation can act as a damping term

or pumping term through an internal energy source.

2.6 isochronicity

Isochronous systems have been enthralling ever since Galileo’s discovery of the first such sys-

tem as the simple harmonic oscillator. Famous scientists such as Jacobi, Poincaré, Newton

etc. performed experimental investigation of isochronous systems[48, 58, 64]. A sequence

of events is isochronous if the events occur regularly or at equal time intervals. The term

isochronous is used in several technical contexts, but usually refers to the primary subjects

maintaining a constant period. In two-dimensional dynamical systems, isochronicity implies
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that the frequency is independent of its amplitude, i.e. independent upon the initial condi-

tions. In electrical power generation the word isochronous indicates that the frequency of

the electricity generated is constant under varying load. In horology a clock is isochronous

if it runs at the same rate regardless of changes in its driving force (also pendulum clocks).

In neurology, isochronic tones are regular beats of a single tone used for brainwave entrain-

ment. There is an exhaustive study of various isochronous centers of vector fields in a plane.

In the recent years Calogero and Leyvraz[81, 159–165, 252] have opened up new interesting

directions in the study of isochronous systems by introducing a simple trick for which one

can construct isochronous oscillators by modifying equations for ordinary oscillators.

2.7 perturbative methods for nonlinear oscillators

In this section, we have discussed some basic and necessary perturbative methods for LLS

systems that we have used in our work. The basic idea of each perturbative method is to

consider a trial solution which may fit in the equation and that provides the approximate so-

lution of a linear as well as a nonlinear system. For a linear system, the solution can be exact,

but for a nonlinear system, the solutions comes as an approximate form. The approxima-

tions are more accurate if the nonlinearity control parameters are tuned as small as possible.

For a nonlinear oscillator, the approximate solution are a combination of lower and higher

order harmonics, in a functional form of sin(. . .) or cos(. . .). The lower order harmonics are

called secular terms which is responsible for divergence of the system, which need to be

corrected through the amplitude and phase equations. Furthermore higher order harmonics

may provide the periodic or aperiodic nature of the system through an approximate solution.

Here we have discussed the perturbative methods only for two-dimensional phase space. In

a following section we start with a single-scale perturbative method and later some of the

multi-scale perturbative methods are also discussed with a common example so that one can

easily find the differences.

2.7.1 Harmonic balance method

Let us consider a system,

ẍ + εh(x, ẋ) + x = 0, (2.10)

with the initial values (x(0), ẋ(0)) = (A, 0) and 0 < ε � 1. Now, if there exists a periodic

solution (for ε = 0) close to A cos(ωt) with amplitude A and frequency ω such that the
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nonlinear function (in presence of ε), h(x, ẋ) ≈ h (A cos(ωt),−ω A sin(ωt)) has a Fourier

series, then it can be written as,

h(x, ẋ) = a1(A) cos(ωt) + b1(A) sin(ωt) + higher order terms, (2.11)

where,

a1(A) =
ω

π

∫ 2π
ω

0
h(A cos(ωt),−ω A sin(ωt)) cos(ωt) dt (2.12)

b1(A) =
ω

π

∫ 2π
ω

0
h(A cos(ωt),−ω A sin(ωt)) sin(ωt) dt (2.13)

and the constant terms (which are their mean value over a cycle) being zero. Then (2.10)

becomes,

(1−ω2) A cos(ωt) + ε a1(A) cos(ωt) + ε b1(A) sin(ωt) + higher order terms = 0. (2.14)

So, the equation can hold for all t only if, (1−ω2)A + ε a1(A) = 0 and b1(A) = 0 and that de-

termines A and ω. If there be a force γ cos(nωt) attached with Eq. (2.14) as well as Eq. (2.10)

then the periodic response function is equal to −γ cos(nωt)
(n2ω2−1) , and then the magnitude will be

rapidly diminished as large as n increases.

Example 2.7.1. Consider the Van der Pol–Duffing system[109],

ẍ + ε(x2 − 1)ẋ + x− λx3 = 0; x(0) = A and ẋ(0) = 0. (2.15)

Assuming an approximate solution, x(t) = A cos(ωt), and after substituting we have

−1
4

3A3λ cos(ωt)− 1
4

A3λ cos(3ωt)− 1
4

A3ωε sin(ωt)

−1
4

A3ωε sin(3ωt)− Aω2 cos(ωt) + A cos(ωt) + Aωε sin(ωt) = 0. (2.16)

So, after equating cos(ωt) and sin(ωt) terms to the both sides we have − 1
4 3A3λ− Aω2 + A =

0 =⇒ ω =
√

1− 3
4 λA2 and − 1

4 A
(

A2 − 4
)

ωε = 0 =⇒ A = 2, where A and ω are the

corresponding system amplitude and phase (are in the positive sense), respectively. Finally

one can have an approximate periodic solution of the form A cos
(√

1− 3
4 λA2t

)
.
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2.7.2 Lindstedt-Poincaré method of autonomous equations: periodic solutions

Let us consider a nonlinear ODE,

ẍ(t) + ω2 x(t) = ε f (x(t), ẋ(t)). (2.17)

The system describes an autonomous system which is oscillating with an unknown period T

having the nonlinear term, ε f (x(t), ẋ(t)) that can be treated in perturbation. Upon applying

the ordinary perturbation to Eq. (2.17) and writing the solution as a series expansion in ε

then the secular terms diminish the expansion, and then any predictive power is lost for

sufficiently large time.

Redefining a scaled time, τ = 2πt/T ≡ Ω t where T is the (unknown) period to avoid the

appearance of the secular terms, then the system (2.17) can be written as,

Ω2 d2x
dτ2 (τ) + ω2 x(τ) = ε f (x(τ),−Ωẋ(τ)) . (2.18)

One can note that the effect of ε both on the solution x(τ) and the unknown frequency Ω. So,

to reduce the effect of the nonlinear term, choosing 0 < ε� 1 and then we can write

Ω = ∑∞
n=0 εn αn = α0 + εα1 + ε2α2 + . . . and

x(τ) = ∑∞
n=0 εn xn(τ) = x0(τ) + εx1(τ) + ε2x2(τ) + . . .

One can expand the nonlinear term, f (x(τ),−Ωẋ(τ)) through Taylor series expansion near a

critical point or fix it by putting the values of x(τ) and Ω for a known f (x(τ),−Ωẋ(τ)). After

expanding Eq. (2.18) by setting all the above considerations one can obtain a system of linear

inhomogeneous differential equations where each equation corresponds to a different order

of ε. The zeroth order equation for ε will provide a harmonic oscillator solution. As a result,

the first order equation for ε will contain the fundamental frequency, corresponding to a

period of 2π in the scaled time, and multiples of this obtained frequency will appear through

the term f . The presence of a driving term (e.g. parametrical force, external excitation etc.)

with the fundamental frequency leads to a resonant behaviour in the first order solution that

will contain some regrettable secular terms and then disfigures the expansion. However, it

can be dealt with this type of problem by fixing the coefficient α1 to cancel the resonant

term in the r.h.s. of the first order equation of ε. Iteration of this procedure to a given

order n allows to determine the coefficients α0, . . . , αn and therefore the frequency, Ω =

α0 + ε α1 + · · · + εn αn to obtain the approximate analytical solution.
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Example 2.7.2. Oscillation of a self-excited system

For example, we choose the Van der Pol–Duffing system (as in previous case),

ẍ + ε(x2 − 1)ẋ + x− λx3 = 0, (2.19)

with the initial values x(0) = a0 and ẋ(0) = 0. For the above system, the frequency, Ω, is

unknown, but it may depends on the amplitude and the period will be 2π
Ω . Let us take a

perturbative solution for Ω and x(t) (with a special situation λ = ε), are,

Ω = 1 + εΩ1 + . . .

x(ε, t) = x0(t) + εx1(t) + . . . (2.20)

The unknown frequency Ω, reduces to 1 when λ = ε = 0. Replacing, Ωt = τ, then Eq. (2.19)

reduces to

Ω2 ẍ + Ωε(x2 − 1)ẋ + x− εx3 = 0. (2.21)

Now under this substitution, Eq. (2.21) has a known period 2π with

xi(τ + 2π) = xi(τ), ∀τ; i = 0, 1, ...... (2.22)

So, after substituting (2.20), Eq. (2.21) becomes

(2.23)(1 + εΩ1 + . . . )2(ẍ0 + εẍ1 + . . . ) + ε(1 + εΩ1 + . . . )
(
(x0 + εx1 + . . . )2− 1

)
(ẋ0 + εẋ1 + . . . )

+ (x0 + εx1 + . . . )− ε(x0 + εx1 + . . . )3 = 0

and by assembling powers of ε we get

ε0 : ẍ0 + x0 = 0, (2.24)

ε1 : ẍ1 + x1 = −2Ω1 ẍ0 − x2
0 ẋ0 + ẋ0 + x3

0, (2.25)

and so on. To simplify the calculations we can use the initial values and impose the condi-

tions

x0(0) = a0, ẋ0(0) = 0 and

xi(0) = 0, ẋi(0) = 0; i = 1, 2, ... (2.26)
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and then we will get the solution of (2.24) satisfying (2.26) is x0(0) = a0 cos τ. Eq. (2.25) then

becomes after putting the value of x0(τ, ε)

ẍ1 + x1 =
(

2a0Ω1 +
3a3

0
4

)
cos τ +

(
1
4

a0
(
a2

0 − 4
))

sin τ +
a3

0
4

cos(3τ) +
a3

0
4

sin(3τ) (2.27)

Then, the secular terms i.e. coefficients of cos τ and sin τ in the first order solution (i.e. ε1)

will be periodic only if Ω1 = − 3
8 a2

0 and the amplitude of the period will be a0 = 2. Therefore

Eq. (2.27) has a general solution under certain condition is in the form

x1(τ) = a1 cos τ + b1 sin τ − 1
32

a3
0(cos(3τ) + sin(3τ)) (2.28)

and then by using (2.26) i.e. the initial values, we have,

x1(τ) =
1

32
(3a3

0 sin τ − a3
0 sin(3τ) + a3

0 cos τ − a3
0 cos(3τ)) (2.29)

The final approximate solution of (2.21) will take the form as,

x(ε, τ) ≈ a0 cos(τ) + εx1(τ) + O(ε2) (2.30)

and after returning to the original time variable t, we have the approximation

x(ε, t) ≈ a0 cos(Ωt) + εx1(Ωt) + O(ε2) (2.31)

where, Ω = 1− 3
8 εa2

0, gives the dependence of frequency on amplitude.

Example 2.7.3. Forced oscillation of a self-excited system

Let us consider the same Van der Pol–Duffing system with an external forcing term, F cos(Ωt),

where Ω is the external frequency and F is the magnitude of externally applied force, then

we have,

ẍ + ε(x2 − 1)ẋ + x− εx3 = F cos(Ωt). (2.32)

In the unforced case the system has a limit cycle with an approximate amplitude 2 and

period 2π
δ , δ = 1− 3

8 εa2
0. For the weak excitation case, F is small and the effect of the external

forcing depends on whether Ω is close to the natural frequency or not. If it is close to the

natural frequency then an oscillation might be generated which is a perturbation of the limit

cycle. But, for the strong forcing case, F would have to be large enough or if the natural

and imposed frequency, Ω, are not close enough, and one should expect that the natural

oscillation might be quenched like the corresponding linear equation. The analysis only for

the case of weak forcing is given below.
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Upon rescaling the time, Ωt by τ i.e. Ωt = τ, one can obtain (from Eq. 2.32),

Ω2 ẍ + εΩ(x2 − 1)ẋ + x− εx3 = F cos τ. (2.33)

As we have considered only the case for weak forcing, one can write F = εF1. Also taking the

perturbative solutions for Ω and x(t) as,

Ω = 1 + εΩ1 + . . .

x(ε, t) = x0(t) + εx1(t) + . . . . (2.34)

Then all the above considerations leads to

ε0 : ẍ0 + x0 = 0 (2.35)

ε1 : ẍ1 + x1 = −2Ω1 ẍ0 − x2
0 ẋ0 + ẋ0 + x3

0 + F1 cos τ (2.36)

and so on.

The general solution of (2.35) with period 2π will be

x0 = a0 cos τ + b0 sin τ, (2.37)

and after reduction (2.36) becomes,

ẍ1 + x1 =
( 1

4 r2
0(3a0 − b0) + 2Ω1a0 + b0 + F1

)
cos τ +

( 1
4 r2

0(3b0 + a0) + 2Ω1b0 − a0
)

sin τ

+ 1
4 (a0 + b0)

(
−4a0b0 + r2

0
)

cos(3τ) + 1
4 (a0 − b0)

(
4a0b0 + r2

0
)

sin(3τ) (2.38)

where r0 =
√

a2
0 + b2

0 > 0. So, for the periodic solution we have

1
4

r2
0(3a0 − b0) + 2Ω1a0 + b0 = −F1, (2.39)

1
4

r2
0(3b0 + a0) + 2Ω1b0 − a0 = 0, (2.40)

together which implies the response function[84]

r2
0

(
5
8

r4
0 + (3Ω1 −

1
2

)r2
0 + (4Ω2

1 + 1)
)

= F2
1 (2.41)

which give the possible amplitudes r0 for given Ω1 and F1.

The Lindstedt–Poincaré perturbation theory is always a reliable technique in the region of

small coupling constant. The harmonic balance result, on the other hand, if expanded in the

perturbation parameter may not always lead to correct result.
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Note that the Lindstedt–Poincaré method provides a way to construct asymptotic approx-

imations of periodic solutions, but it cannot be used to obtain solutions that evolve aperiod-

ically on a slow time-scale[253]. The method of multiple-scales is a more general approach

that involves two key points. The first is the idea of introducing scaled space and time coordi-

nates to capture the slow modulation of the pattern, and treating them as separate variables

in addition to the original variables that must be retained to describe the patterned state

itself. In the essential idea of multiple scales, an analytical solution, say x(t; ε) that the func-

tional dependence of x on t and ε is not disjoint because x depends on the combination of

εt as well as on the individual t and ε i.e. in place of x = x(t; ε) we write x = x(t, εt; ε).

2.8 multiple time scales and renormalisation group (rg) technique

Multiple time scale analysis is an useful analytic tool for constructing uniform or global

approximate solutions of independent variables. Asymptotic and perturbative analysis have

played a significant role in applied science. When the regular perturbation techniques (as

for example Reductive Perturbation Technique) are failed to show approximate result for a

system, the singular perturbation technique are to be called for. Wentzel–Kramers–Brillouin

(WKB) is a special case of multi-scale analysis, applicable on linear equations only whereas

Krylov–Bogolyubov (K-B), Renormalisation Group (RG) etc. are such types of singular per-

turbation techniques which are dependent upon the multiple time scale analysis. These are

most well known techniques and each of which has its particular drawback, preventing

algorithmic application. The RG technique is the principal tool to calculate this universal be-

haviour and is properly regarded as a means of asymptotic analysis. In this analysis a set of

scaled variables, which are regarded as independent variables although they are ultimately

related to one another, is introduced to remove all secular terms. The essence of the RG

method is to extract structurally stable features of a system which are insensitive to details.

Similarities between the RG and conventional singular perturbation method is that both

removes the secular terms or divergent terms from the perturbation series from a periodic

solution point of view. Chen et al.[46, 47] demonstrate that, singular perturbation methods

may be understood as normalised perturbation theory and that amplitude equations obtain-

able by Reductive Perturbation Technique (RPT) may be derived as RG equations, also they

indicate that the RG method may have several practical advantages compared with conven-

tional methods. Recently it has been demonstrated to be an useful method for differentiating

between center like oscillation and limit cycles for a two-dimensional dynamical system[48,

49, 166, 254–257].

29



Use of such techniques can serve in differentiating between oscillatory dynamics of a

center-type or limit cycle. The center-type oscillation consists of a continuous family of closed

orbits in phase space, each orbit being determined by its own initial condition.

2.8.1 Renormalisation Group (RG) analysis for Liénard-type systems

Here, the RG perturbative technique is given by stepwise algorithm from a general point of

view for an autonomous nonlinear second order homogeneous ODE that contains a trivial

fixed point surrounding by a periodic orbit i.e. a LLS system. As we are very much concerned

about the perturbation theory for various types of nonlinear ODE, so, to hold the same,

the system would have to be small enough otherwise the perturbative analysis will fail

to provide the system characteristics or it might introduce error. So, whatever system or

approaches are explained regarding this context, they are for weakly nonlinear systems. On

the other hand, if any system does not have control parameter then perturbation theory

tell us that a perturbation parameter (or nonlinearity control parameter, say, λ) has to be

introduced artificially to perform perturbation theory. Finally one has to put λ = 1 to bring

back to the original equation of motion.

Considering a general weakly nonlinear LLS system

ẍ + λF(x, ẋ)ẋ + G(x) = 0, (2.42)

with the initial values x(t0) = A and ẋ(t0) = 0, where over dots represents the derivatives

with respect to t and λ is a nonlinearity control parameter. The functions F and G satisfy the

Liénard or LLS properties. For a linear restoring force, the natural frequency of the above

system is ω and if there be a nonlinear restoring force then the frequency ω should have to

be corrected that can be entered through phase equation. One can start the RG calculations

by rescaling the natural frequency in the original time scale or with the natural frequency

as it is. As we are talking about weak system, so λ lies between 0 and 1 i.e. 0 < λ � 1. RG

analysis for other types of two-dimensional or three-dimensional kinetic flow equations are

well explained in [48, 49, 64, 254, 258, 259] which are not given here as we are discussing the

perturbation theory here in the context of a LLS system.

So the basic steps of calculation are:

1. Consider a perturbative solution: x(t) = x0(t) + λx1(t) + O(λ2).

2. Put the approximate solution, x, in (2.42).

3. Collect λ0, λ1, . . . from the both sides of (2.42) upto desired expectation.

4. Solve the first harmonics, x0(t) for λ0 by using initial values.
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5. Solve the second harmonics, x1(t) for λ1, by using x0(t) along with initial values.

. . . repeat the last step n-times to solve the higher order harmonics for λn.

6. Write the solution of x(t) in terms of x0(t), x1(t), . . . i.e. x(t) = x0(t) + λx1(t) + O(λ2). It has

a constant amplitude, A, and phase, θ0 = −ωt0; ω is the system frequency in absence

of nonlinearity.

7. Take a perturbation in the time interval (t− t0) by splitting the interval (t− t0) = (t− τ) +

(τ − t0), t0 < τ � t and τ is very close to t0; the interval (t− τ) is called the principal

part and the non principal part (i.e. τ − t0) can be neglected because of smallness.

8. If any term is multiplied directly by (t− t0) in the final solution of x(t), then convert it

into (t− τ) by neglecting the other part.

9. Two renormalisation constants (Z1(τ, t0), Z2(τ, t0)) have to be introduced to absorb the

divergence owing to the secular terms, cos(ωt + θ0), sin(ωt + θ0)− are the first oscil-

lations, where A(τ) = A
Z1(τ,t0) and θ(τ) = θ0 − Z2(τ, t0) i.e. Z1(τ, t0) and Z2(τ, t0) are

the multiplicative and additive perturbations to the amplitude and phase, respectively.

They are introduced to know the stability of amplitude and phase. The series of Z1(τ, t0)

and Z2(τ, t0) are of the form,

Z1(τ, t0) = 1 +
∞

∑
1

λn pn = 1 + λp1 + O(λ2),

Z2(τ, t0) = 0 +
∞

∑
1

λnqn = λq1 + O(λ2). (2.43)

10. Put A and θ0 in the final solution and remove the terms which could lead to divergence.

This will provide (p1, q1) as a function of (τ − t0) which are responsible for occurring

the divergence, and one can ignore them as (τ − t0) is very small.

11. The last two steps effectively implies that the amplitude and phase are slightly changed

from (A, θ0) to (A(τ), θ(τ)) in the solution of x(t) (≈ x(t, τ)—in the step 6) i.e. they are

weakly time dependent due to introducing the arbitrary time scale variable τ.

12. The final solution, x(t, τ), cannot depend on the arbitrary time scale, τ, i.e.
(

∂x
∂τ

)
t

= 0,

which leads to

dA
dτ

= f (A(τ)),

dθ

dτ
= g(A(τ)). (2.44)

31



13. The radius of the cycle can be obtained by setting f (A) = 0 if there exist any A 6= 0

and if all A are trivial for f (A) = 0 then we may call this as a center or center-type

oscillation.

14. The independence of θ upon τ, i.e. dθ
dτ = g(A) = 0 gives the condition for isochronicity

i.e. if g(A) 6= 0 then the Liénard system would not be isochronous.

In a recent communication Das et al.[255, 256] showed that the above rigorous calculation

can be fixed just by looking at the solution of x1(t) which is able to provide the amplitude

and phase equations as it does contain the secular terms for the first order correction only.

There is no need to calculate further after the 5th step. But it is better to follow all the steps

otherwise it would not be easy to find the connection between the amplitude and phase

equations with the approximate solution.

Example 2.8.1. As for example choosing the same Van der Pol–Duffing system case,

ẍ + ε(x2 − 1)ẋ + x− λx3 = 0, (2.45)

having the initial values x(t0) = A and ẋ(t0) = 0 and taking a special situation, λ = ε, and

consider a perturbative solution of x(t) as x(t) = x0(t) + εx1(t) + O(ε2). Then after substituting

into Eq. (2.45) we have the simplified form,

(ẍ0 + εẍ1) + ε(x2
0 − 1)ẋ0 + (x0 + εx1)− εx3

0 + O(ε2) = 0, (2.46)

Then Eq. (2.46) gives (after neglecting O(ε2)),

ε0 : ẍ0 + x0 = 0, (2.47)

ε1 : ẍ1 + x1 = −(x2
0 − 1)ẋ0 + x3

0. (2.48)

Now, initial values (x0(t0) = A, ẋ0(t0) = 0) gives the solution of the zeroth order i.e. x0 is

x0 = A cos(t + θ0), −t0 = θ0. Then the first order equation takes the form,

ẍ1 + x1 = −(A2 cos2(t + θ0)− 1)(−A sin(t + θ0)) + A3 cos3(t + θ0). (2.49)
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By using initial values (x1(t0) = 0, ẋ1(t0) = 0), solution of the above equation takes the form,

(2.50)

x1 =
7
32

A3 sin (θ0 + t) +
3
8

A3t sin (θ0 + t)− 1
32

A3 sin (3θ0 + 3t) +
3
8

A3θ0 sin (θ0 + t)

+
1
32

A3 cos (θ0 + t)− 1
8

A3t cos (θ0 + t)− 1
32

A3 cos (3θ0 + 3t)

− 1
8

A3θ0 cos (θ0 + t)− 1
2

A sin (θ0 + t) +
1
2

At cos (θ0 + t) +
1
2

Aθ0 cos (θ0 + t) .

Then a complete perturbative solution, x(t) = A cos(t + θ0) + εx1(t) + O(ε2) becomes (after

applying step 11)

(2.51)

x(t) = A(τ) cos(θ(τ) + t) +

ε

(
7

32
A(τ)3 sin(θ(τ) + t) +

3
8

tA(τ)3 sin(θ(τ) + t)− 1
32

A(τ)3 sin(3θ(τ) + 3t)

+
3
8

A(τ)3θ(τ) sin(θ(τ) + t)− 1
2

A(τ) sin(θ(τ) + t) +
1
32

A(τ)3 cos(θ(τ) + t)

− 1
8

tA(τ)3 cos(θ(τ) + t)− 1
32

A(τ)3 cos(3θ(τ) + 3t)− 1
8

A(τ)3θ(τ) cos(θ(τ) + t)

+
1
2

tA(τ) cos(θ(τ) + t) +
1
2

A(τ)θ(τ) cos(θ(τ) + t)
)

+ O(ε2).

Now introducing an arbitrary small time, τ through scaling, (t− t0) = (t− τ) + (τ − t0) and

neglecting the non-principal part we have,

x(t, τ) = A(τ) cos(θ(τ) + t) +

ε

(
7

32
A(τ)3 sin(θ(τ) + t) +

3
8

(t − τ)A(τ)3 sin(θ(τ) + t)− 1
32

A(τ)3 sin(3θ(τ) + 3t)

+
3
8

A(τ)3θ(τ) sin(θ(τ) + t)− 1
2

A(τ) sin(θ(τ) + t) +
1
32

A(τ)3 cos(θ(τ) + t)

− 1
8

(t − τ)A(τ)3 cos(θ(τ) + t)− 1
32

A(τ)3 cos(3θ(τ) + 3t)− 1
8

A(τ)3θ(τ) cos(θ(τ) + t)

+
1
2

(t − τ)A(τ) cos(θ(τ) + t) +
1
2

A(τ)θ(τ) cos(θ(τ) + t)
)

+ O(ε2).

(2.52)

The above solution is obtained after removing all the secular terms in (2.51) by p1 = − 1
8 A(A2−

4)(τ − t0) and q1 = − 3
8 A2(τ − t0). Now applying the final step i.e. the final solution cannot

be dependent on the arbitrary time scale, τ, i.e.
(

∂x
∂τ

)
t

= 0, which leads to,

dA
dτ

= −1
8

A(τ)(A2(τ)− 4),

dθ

dτ
= −3

8
εA2(τ). (2.53)

This implies the system has a limit cycle of approximate amplitude 2 along with the fre-

quency correction of amount − 3
8 εA2(τ) due to the bistable potential. Thus the value of the
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amplitude is obtained as the distance from the origin (i.e., the fixed point) and the system

will not be an isochronous oscillator as θ decreases slowly with time.

2.8.2 Krylov–Bogolyubov (K-B) method

Let us consider the form of a weakly nonlinear oscillator as,

ẍ(t) + εh(x(t), ẋ(t)) + ω2x(t) = 0, 0 < ε� 1, (2.54)

where, h(x, ẋ) is a function of the position variable, x and the velocity variable, ẋ which

contains nonlinearity coming from nonlinear damping or restoring force. The nonlinearity

control parameter, ε, must be within 0 and 1. Now, let us rewrite Eq. (2.54) in the form as,

ẋ = y,

ẏ = −ω2x− εh(x, ẋ). (2.55)

For ε = 0, the above system reduces to simple harmonic oscillator (SHO) with natural fre-

quency ω having a solution, x(t) = r cos(ωt + φ) and y(t) = −ω r sin(ωt + φ), with constant

amplitude, r =
√

x2 + y2

ω2 and phase, φ = −ωt + tan−1(− y
ωx ) having the circular orbit of period

2π
ω .

For ε 6= 0 i.e. the nonlinear terms are opened and the vector field changes by an amount

ε, and for small ε, all orbits are nearly circular which approximately repeat in every 2π
ω , and

because any value introduces a tiny change, so one can really change the period by more

than some amount proportional to ε. Then two questions may arise, how to find a limit cycle

and what will be the amplitude of the cycle?

In what follows, the method is the adoption of the combination of power consumption law

along with the averaging theory[10]. For a SHO, the total energy is conserved and as we go

around one cycle the energy has not changed. The system with ε, sometimes getting pumped

and sometimes damped and that’s why it is an interesting term. When it repeats in the

system, the limit cycle occurs because of the mutual effect of them. So, making the solutions

be non-autonomous i.e. the amplitude, r and phase, φ being explicitly time dependent one

can get an idea about the evolution of the solutions for weak nonlinearity.
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Therefore, considering x(t) ≈ r(t) cos(ωt + φ(t)) and y(t) ≈ −ω r(t) sin(ωt + φ(t)) with

r(t) ≈
√

x2(t) + y2(t)
ω2 and φ(t) ≈ −ωt + tan−1

(
− y(t)

ωx(t)

)
, then one can have the rate of change

of amplitude and phase variables with respect to time as,

ṙ(t) =
ε h
ω

sin(ωt + φ(t)),

φ̇(t) =
ε h

ω r(t)
cos(ωt + φ(t)). (2.56)

This implies that the time derivatives of amplitude and phase are of O(ε). Now, if U(t) be a

running average of a time dependent function U defined as,

U(t) =
ω

2π

∫ t+ π
ω

t− π
ω

U(s) ds or U(t) =
ω

2π

∫ 2π
ω

0
U(s) ds, (2.57)

then from the fundamental theorem of calculus it is observed that U̇ = U̇. By applying this

averaging trick to the time dependent amplitude and phase equations for each cycle (as the

trial solution is taken approximately periodic) then we have,

ṙ = 〈 ε h(x,y)
ω sin(ωt + φ(t))〉t,

φ̇ = 〈 ε h(x,y)
ω r(t) cos(ωt + φ(t))〉t. (2.58)

As ṙ(t) and φ̇(t) are of O(ε) then we may set the perturbation on r and φ over each cycle as,

r(t) = r + O(ε),

φ(t) = φ + O(ε), (2.59)

where, r and φ are very weakly time dependent so that the error can be negligible. Finally,

from the above consideration, one can obtain,

ṙ = 〈
ε h(r cos

(
ωt + φ

)
,−ω r sin

(
ωt + φ

)
ω

sin
(
ωt + φ

)
〉t = ϕ1(r, φ),

φ̇ = 〈
ε h(r cos

(
ωt + φ

)
,−ω r sin

(
ωt + φ

)
ω r

cos
(
ωt + φ

)
〉t = ϕ2(r, φ), (2.60)

where, O(ε2) terms can be neglected as first order approximation is considered here. The

above systems will not be in a coupled form for autonomous set of equation, but for the

non-autonomous case we may have coupling between amplitude and phase flow variables

in the flow equation and that kind of situation may provide very complex phenomena which

is quite harder to solve as well as to get back the original system of equations which can be

fixed by considering further approximations.

35



Example 2.8.2. For an example, let us choose the Van der Pol–Duffing system,

ẍ + ε(x2 − 1)ẋ + x− λx3 = 0, (2.61)

having the initial values x(t0) = A and ẋ(t0) = 0. Now, considering a special situation, λ = ε,

the above system can be written as,

ẍ + εh(x, ẋ) + x = 0; h(x, ẋ) = (x2 − 1)ẋ− x3. (2.62)

So, for ε = 0, the harmonic oscillator solution will be x(t) = r cos(t + φ) and y(t) = ẋ(t) =

−r sin(t + φ) with (r, φ) = (
√

x2 + y2,−t + tan−1(− y
x )). For ε 6= 0, the solution will be slightly

modified to x(t) ≈ r(t) cos(t + φ(t)) and y(t) ≈ −r(t) sin(t + φ(t)) with

(r(t), φ(t)) ≈
(√

x2(t) + y2(t),−t + tan−1
(
−y(t)

x(t)

))
.

Then amplitude and phase equation (before averaging) becomes,

ṙ(t) = ε h(x, ẋ) sin(t + φ(t)),

φ̇(t) =
ε h(x, ẋ)

r(t)
cos(t + φ(t)), (2.63)

with r(t) = r + O(ε) and φ(t) = φ + O(ε), where r and φ are very weakly time dependent. Then

the average amplitude and phase equations are of the form (after neglecting O(ε2) terms),

ṙ = 〈ε h(r cos
(
t + φ

)
,−r sin

(
t + φ

)
) sin

(
t + φ

)
〉t,

φ̇ = 〈
ε h(r cos

(
t + φ

)
,−r sin

(
t + φ

)
)

r
cos
(
t + φ

)
〉t, (2.64)

with

h = (x2 − 1)ẋ− x3

= −r (r2 cos2(t + φ)− 1) sin
(
t + φ

)
− r3 cos3(t + φ) + O(ε). (2.65)

Finally, from the above consideration, integrating we have,

ṙ =
ε

2

(
r− r3

4

)
,

φ̇ = −3 ε

8
r3. (2.66)

For the considered autonomous system the amplitude equation is completely dependent on

r (independent of φ) but the phase equation is dependent upon r. One can have the phase
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correction once the amplitude is known. The amplitude equation shows that the system has

a limit cycle with radius of magnitude 2.

The existence of a limit cycle (or a periodic attractor) can be predicted by the Poincaré–

Bendixson theorem, but the exact location and size of the limit cycle cannot be predicted

in advance. This is why perturbation theory is required to arrive at some amplitude equa-

tion whose fixed point are supposedly give us the location of the limit cycle, if exist. This

amplitude equation helps us to understand more quantitatively about the location of the

limit cycle or how large it will be. But, if one is interested in knowing finer details about

the shape and size of the limit cycles for these types of LLS oscillators, the procedure of

approaching the problem perturbatively becomes non-trivial. So perturbation theory (up to

a reliable order) provides us flow equations in amplitude and phase and their fixed points

tell us where the system will ultimately settle. For example, to first order in perturbation, the

amplitude of the Van der Pol oscillator (λ = 0 in 2.61) gives a limit cycle and for the Duffing

oscillator (ε = 0 in 2.61) the frequency needs to be corrected with no change in amplitude.

As it turns out, first order perturbation theory gives us very practicable and accurate results,

independent of which technique is used to arrive at them, viz., multiple time scale steps[34,

53], generalized averaging steps[34, 44, 54] or, of more recent practice of the RG method

steps[46, 48, 49].

2.9 approximate solution of nonlinear oscillator

It is very difficult to find an exact analytical solution of a nonlinear system except only for a

very few special cases but for most of the systems exact analytical solution is almost impossi-

ble. Sometimes perturbative approach is able to provide an approximate analytical solution

of a nonlinear system and the exactness of the solution will depend upon the coefficient of

the nonlinearity i.e. the solutions are more exact as much as the system contains weak nonlin-

earity. Then one can predict an approximate analytical solution in regard to the multi-scale

perturbative approach to obtain the amplitude and phase equation.

2.9.1 Approximate solution by Renormalisation Group (RG)

Let us describe more elaborately starting from the amplitude and phase equation obtained

from RG approach (Eq. 2.53). If we integrate the amplitude separately then we have

A(τ) =
2e

τε
2

√
c + eτε
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and the phase solution will be

θ(τ) = d− 3
8

A(τ)2τε

where c and d are the integrating constants which can be fixed by the initial conditions. Now,

once we obtain the amplitude and phase then we can put it in the solution of x(t) in (2.51)

where the final removal of the τ-dependence can be done through the choice τ = t. This will

provide an approximate analytical solution in the form

(2.67)

x(t) = A(t) cos(θ(t) + t) +

ε

(
7

32
A(t)3 sin(θ(t) + t) +

3
8

tA(t)3 sin(θ(t) + t)

− 1
32

A(t)3 sin(3θ(t) + 3t) +
3
8

A(t)3θ(t) sin(θ(t) + t)− 1
2

A(t) sin(θ(t) + t)

+
1
32

A(t)3 cos(θ(t) + t)− 1
8

tA(t)3 cos(θ(t) + t)− 1
32

A(t)3 cos(3θ(t) + 3t)

− 1
8

A(t)3θ(t) cos(θ(t) + t) +
1
2

tA(t) cos(θ(t) + t) +
1
2

A(t)θ(t) cos(θ(t) + t)
)

+ O(ε2),

with

A(t) =
2e

tε
2

√
c + etε

and

θ(t) = d− 3
8

A(t)2tε. (2.68)

Moreover, total energy (approximated) of the considered Van der Pol—Duffing system can

directly be calculated by the formula given by

E =
ẋ2

2
+
[

x2

2
− λ

x4

4

]
, (2.69)

once the solution of x(t) is known and the period of the oscillation can be calculated in terms

of an elliptic integral with

T = 2
∫ A
−A dx 1√

2(E−V(x)) , V(x) =
[

x2

2 − λ x4

4

]
(2.70)

where A is the amplitude of the oscillation.
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2.9.2 Approximate solution by Krylov–Bogolyubov (K-B)

In addition to the above consideration, if we want to find an approximate solution by using

K-B perturbative method we have to calculate the similar integral for the amplitude and then

we can calculate the phase solution. So, from (2.66), we have

r =
2e

tε
2

√
c + etε

and

φ = d− 3
8

r2tε, (2.71)

where c and d are the integrating constants which can be fixed by the initial conditions by

using r0 and φ0 i.e. x(t0) and ẋ(t0). Therefore, a general approximate phase space solution

upto the first order of the considered Van der Pol—Duffing system are in the form,

x(t) = r cos
(
t + φ

)
+ O(ε),

y(t) = −r sin
(
t + φ

)
+ O(ε), (2.72)

where, r and φ are given above.

The approximate energy becomes of the same form as in the undamped case due to the

weak nonlinearity (i.e. 0 < ε � 1), which is, E = 1
2 (x2 + ẋ2). The correctness due to the error

can be neglected as ε is very small. So the change in energy or energy consumption over

each cycle is,

∆E =
∫ T

0
dE
dt dt =

∫ 2π+O(ε)
0

dE
dt dt = 2π r ṙ + O(ε2) = d

dt

(
πr2) + O(ε2). (2.73)

2.10 van der pol—duffing in the form of λ − ω

Here, we have shown the λ − ω type kinetic form of Van der Pol–Duffing system

ẍ + ε(x2 − 1) ẋ + x − εx3 = 0. (2.74)

The above system has a unrefined kinetic set of equations, say, ẋ = y, ẏ = −ε(x2 − 1) ẋ −
x + εx3, that does not correspond to a λ − ω or λ − ω type system. Then the point is, what

will be its λ − ω type kinetic form, if any?
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To answer this precise question recalling the λ − ω system having the following kinetic

form:

dx
dt

= λ(r )x − ω (r )y,

dy
dt

= ω (r )x + λ(r )y ; r =
√

x2 + y2 .

one can have the amplitude and phase equations in polar coordinate,

dr
dt

= rλ(r ) ,

dφ

dt
= ω (r ) .

Now, applying K-B perturbative method as given in section 2.8.2 to the Van der Pol–

Duffing system (2.74) we have the following amplitude and phase equations:

ṙ =
ε

2

(
r − r3

4

)
,

φ̇ = − 3 ε

8
r3 .

Then let us rewrite the above equations into the form as,

ṙ = r
ε

8
(

4 − r2) = rλ(r ); λ(r ) =
ε

8
(

4 − r2) ,

φ̇ = ω (r ); ω (r ) = − 3 ε

8
r3 . (2.75)

Now, if we write a two-dimensional kinetic λ − ω system with the above forms of λ(r ) and

ω (r ) then the system looks like,

dx
dt

=
ε

8
(

4 − r2) x −
(
− 3 ε

8
r3
)

y,

dy
dt

=
(
− 3 ε

8
r3
)

x +
ε

8
(

4 − r2) y ; r =
√

x2 + y2 . (2.76)

Simulation of the above equation agrees with Eq. (2.74) which has a limit cycle of radius

≈ 2 (like Van der Pol). There is a structural difference between them, like the cycle for the

λ − ω form of the above system is circular whereas the structure of the cycle of system (2.74)

is not exactly circular. As a conclusion one can say that weaker the nonlinearity a system

will provide better agreement as orbits of such weakly Liénard system (Eq. 2.74) shows

more circular in nature (closer to harmonic oscillator solution). More details are given in

Appendix A.
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2.11 on the classification of periodic orbits

Over the last few decades there are tremendous progress made in the area of dissipative

dynamical systems but the problem is still there to locate the periodic orbits and its nature

of a two-dimensional system[243]. The periodicity of orbits may come in two varieties–one

is limit cycles and the other is center or center-type oscillations. The center or center-type

orbits are the continuous family of closed curves in phase space dependent upon a prescribed

initial condition but the limit cycle orbit is an isolated periodic trajectory where the nearby

trajectories are attracted by the closed orbit or move far away from the isolated orbit. A

little more than two decades ago Chen et al.[46, 47] proposed a different way of looking

at the problem of nonlinear dynamical systems of oscillators which has been explored by

several groups. This method involves a direct use of perturbation theory and RG approach.

The RG naturally leads to flow equations. In this respect it is akin to the K-B method. The

advantage, however, lies in the fact that RG uses naíve perturbation theory. One does not

need to anticipate scales (as in multiple scales method) or make an assumption about slowly

varying amplitude and phase (Krylov–Bogoliubov method).

Now a question may arise regarding the applicability of the multi-scale perturbative meth-

ods like K-B, Lindstedt-Poincaré, RG etc. Except the RG, other methods are related to the

problems since 18th century and people have tried to understand through various simple

as well as complicated systems[10, 34, 54, 57] by considering a harmonic solution in the

weak limit of the system. In a recent development by Sarkar et al.[260] have also tried to

understand the application of the RG principle through problems in dynamics for various

2-D systems where they begin by observing that a periodic solution can be expressed as a

Fourier series with amplitude A and phase θ of the lowest harmonic which is determining

the amplitude and phase of the higher order ones in the flow equations. A simple perturba-

tive series expansion of the dynamical variable may lead to a divergent answer. If the time

‘t ′ , at which x (t) is desirable and by the help of the initial time ‘t ′0, then x (t) will diverge as

t − t0 → ∞ and this is completely similar to divergence in field theory. As, the discussion

is about a physical variable, then the answer has to be finite and while this is achieved in

field theory by constructing running coupling constants which is done for the differential

equation by introducing an arbitrary time scale τ and letting the amplitude and phase de-

pend on τ . Further development of it Das et al.[255, 256] have modified the RG scheme so

that one can not go through a rigorous calculation after finding a full series solution of x (t)
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where the amplitude and the phase equations can be predictable by the second harmonics.

After applying all the methodology one can have the the flow equations.

d A
dτ

= f ( A , θ ) , (2.77a)

dθ

dτ
= g( A , θ ) . (2.77b)

For the autonomous system of f and g are generally function of A only. We propose to

use the above flow equations to differentiate between oscillators which are of the center

variety and limit cycles. The slowly decaying center-type oscillation consists of a continuous

family of closed orbits in phase space where each orbit being determined by its own initial

condition. This implies that the amplitude A are fixed, once the initial condition is set. This

must lead to

d A
dτ

= 0. (2.78)

This statement is exact and is not tied to any perturbation theory argument. For the limit

cycle on the other hand the condition is

d A
dτ

= f ( A) (2.79)

and f ( A) must be such that the flow must have a fixed point. The fixed point of f ( A) has

to be stable for a stable limit cycle. If one finds A = 0 which is the only fixed point of f ( A),

then it is a focus.
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3
I S O C H R O N I C I T Y A N D L I M I T C Y C L E O S C I L L AT I O N I N C H E M I C A L

S Y S T E M S

3.1 introduction

The generic features of diverse nature of nonlinear chemical oscillations are due to auto-

catalysis and various feedback mechanisms into the system which are basically controlled

by a few slowest time scales of the overall process. The coupled dynamics of the system can

be described by two intermediate concentrations or population variables characterized by

the occurrence of a limit cycle when the motion is visualized on a phase plane. In particular,

a procedure of the reduction of chemical cubic equations to the form of a second order

differential equation with coefficients which allows for the limit cycle analysis so called

Rayleigh oscillator has been proposed for a first time in the article by Lavrova et al.[15, 22].

Its further development to a more general case, the Liénard oscillator was given by Ghosh

and Ray[40]. Here we consider that a class of arbitrary, autonomous kinetic equations in two

variables describing chemical oscillations can be cast into the form of a Liénard oscillator[34,

40, 48, 49, 58, 64]. It is characterized by the nonlinear forcing and damping coefficients which

can control the limit cycle behaviour.

Although nonlinear oscillators got a lot of attention over the years in the field of dynam-

ical systems but there is no straightforward way of distinguishing between limit cycle and

isochronous orbit of the system with their very different kinds of solutions. Here our effort is

to study the isochronous systems by analyzing the behaviour around a center by Renormal-

isation Group (RG) method[46, 47] and to find the so called periodic orbits i.e. conditions

under which a system becomes isochronous[48, 49]. Our method of distinguishing center

and limit cycle behaviours are numerically analyzed here in terms of the parameters of the

chemical oscillators. When the two-dimensional kinetic equations are transformed into a

Liénard system of equation we would like to find here the relation between the limit cycle

and isochronicity in an open dynamical system. As the chemical oscillators are standard real

experimental models the theory is verified here in various systems.
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In section (3.2), we have briefly reviewed the method of reduction of kinetic equation

into Liénard form to find the condition for limit cycle. Isochronicity for Liénard System

is described in section (3.3). In section (3.4), we have shown the examples with (3.4.1) for

modified Brusselator model, (3.4.2) for Glycolytic oscillator and (3.4.3) for Van der Pol type

oscillator to analyze the behaviour of limit cycle and isochronicity. The chapter1 is concluded

in section (3.5).

3.2 reduction of kinetic equation into liénard form : conditions for limit

cycle

Let us consider a two-dimensional set of autonomous kinetic equations for open system.

Here our purpose is to review the condition for limit cycle by casting the two dynamical

equations into a form of Liénard oscillator[10, 34, 40, 48, 58, 64]. Following the analysis of

Ghosh and Ray[40] we consider a system of differential equations

dx
dt

= a0 + a1 x + a2 y + f (x , y) ,

dy
dt

= b0 + b1 x + b2 y + g(x , y) , (3.1)

where x and y are populations of two intermediate species of a dynamical process with

a0 , a1 , a2 , b0 , b1 , b2 are all real parameters expressed in terms of the kinetic constants with

f (x , y) and g(x , y) are nonlinear functions.

Then writing the equations in terms of a new pair, (z , u) as

z = β0 + β1 x + β2 y,

u = α0 + α1 x + α2 y, (3.2)

where α0 , α1 , α2 and β0 , β1 , β2 are constants expressed in terms of a i and b i .

From the inverse transform of the above we can easily obtain the expressions of x and y

as given by

x =
β2 (u − α0 ) − α2 (z − β0 )

α1 β2 − β1 α2
= L(u , z) ,

y =
β1 (u − α0 ) − α1 (z − β0 )

α2 β1 − β2 α1
= M(u , z) .

Choosing u and z in such a way that,

dz
dt

= u , (3.3)

1 Some portion of this chapter is published in the J. Math. Chem. - Saha et al. (2017)
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and differentiating again w.r.t. t, we get

z̈ = u̇ = α1 ẋ + α2 ẏ (3.4)

= α1{a0 + a1 L(z , ż) + a2 M(z , ż) + ϕ(z , ż)} + α2{b0 + b1 L(z , ż) + b2 M(z , ż) + φ(z , ż)}

where

L(z , ż) = c1 z + c2 ż + c L

with

c1 = − α2

α1 β2 − α2 β1
, c2 =

β2

α1 β2 − α2 β1
, c L =

α2 β0 − α0 β2

α1 β2 − α2 β1

and

M(z , ż) = c3 z + c4 ż + c M

with

c3 = − α1

α2 β1 − α1 β2
, c4 =

β1

α2 β1 − α1 β2
, c M =

α0 β1 − α1 β0

α2 β1 − α1 β2
.

Next we consider c L and c M to be negligibly small. It is trivial to assume that both the

numerators will not exactly vanish as α2 β0 = α0 β2 and α0 β1 = α1 β0 together giving α2 β1 =

α1 β2 which makes all constants c i and the system to be undefined. Here it is performed by

choosing the ratio of numerator and denominator for the constants c L and c M are very

small. Subsequently we define L(z , ż) and M(z , ż) by ignoring the small values of c L and

c M , respectively.

Now taking the functions ϕ and φ as power series i.e.

ϕ(z , ż) =
∞

∑
n ,m=0

ϕnm zn żm ,

φ(z , ż) =
∞

∑
n ,m=0

φnm zn żm (3.5)

in Eq. (3.5) one finds

z̈ = A00 + A10 z + A01 ż +
∞

∑
n>1

An0 zn +
∞

∑
m>1

A0m żm +
∞

∑
n ,m>1

Anm zn żm , (3.6)

where, A00 = α1 a0 + α2 b0 + α1 ϕ00 + α2 φ00, A10 = α1 (a1 c1 + a2 c3 ) + α2 (b1 c1 + b2 c3 ) +

α1 ϕ10 + α2 φ10, A01 = α1 (a1 c2 + a2 c4 ) + α2 (b1 c2 + b2 c4 ) + α1 ϕ01 + α2 φ01, An0 = α1 ϕn0 +

α2 φn0, A0m = α1 ϕ0m + α2 φ0m and Anm = α1 ϕnm + α2 φnm , ∀n , m > 1.
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Now, for the steady state, z = z s , both ż and z̈ vanish and the fixed points follow the

condition

A00 + A10 z s +
∞

∑
n>1

An0 zn
s = 0. (3.7)

The equation for deviation from the stationary point from z i.e. ξ (= z − z s ) follows from

Eq. (3.6) as,

ξ̈ + F (ξ , ξ̇ ) ξ̇ + G (ξ ) = 0, (3.8)

where the functions F (ξ , ξ̇ ) and G (ξ ) are given by

F (ξ , ξ̇ ) = −
[

A01 +
∞

∑
m>1

A0m ξ̇ m−1 +
∞

∑
n ,m≥1

Anm (ξ + z s )n ξ̇ m−1

]

G (ξ ) = −
[

A00 + A10 (ξ + z s ) +
∞

∑
n>1

An0 (ξ + z s )n

]
. (3.9)

Eq. (3.8) is a well known form of generalised Liénard equation or Liénard–Levinson–Smith

(LLS) system if the damping force, F (ξ , ξ̇ ) and the restoring force, G (ξ ) satisfy the usual

regularity conditions as given in Strogatz[10] page-210. So, the condition for existence of

having a stable limit cycle of the above described Liénard system should satisfy F (0, 0) < 0

i.e.

−
[

A01 +
∞

∑
n>1

An1 zn
s

]
< 0. (3.10)

3.2.1 Connection between Liénard–Levinson–Smith (LLS) system and stability theory

It is well observed that a Liénard system or LLS system must contains a trivial fixed point

as they are arbitrary second order homogeneous autonomous ordinary differential equation

(ODE) and its oscillatory behaviour can be found near the origin. Now, let λ1,2 = α ± i β be

complex conjugate eigenvalues of stability matrix of (3.1), calculated near a fixed point, then

the system near the fixed point will be asymptotically stable spiral or center or an unstable

spiral if α < 0, or α = 0 or α > 0, respectively. From the local bifurcation theory, it is

known that, to have a stable limit cycle attractor in the phase space, the fixed point must

have to be unstable in nature i.e. α > 0. One can conclude the similar form of the sign of

the coefficient of the non-zero damping i.e. F (0, 0) < 0 as there is a relation between the

constant damping coefficient of a Liénard or LLS system with the real part of eigenvalues, is

F (0, 0) = −2α i.e. the constant damping coefficient is directly proportional to the real part of
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the eigenvalue distinguishable by a sign. This has been able to provide successfully the same

if any system can be written in a Liénard or LLS form. The solution will be a center in nature,

if α = 0 i.e. F (0, 0) = 0 i.e. when there is no constant damping force in the system around

the origin and for an asymptotically stable spiral solution, F (0, 0) > 0(α < 0) implies that

the solution starts near the limit cycle and ends spirally to the critical point. The direction of

the spiral can be determined from the sign of the time derivative of the angular variable (in

polar coordinate).

3.3 isochronicity for liénard system

For a given two-dimensional nonlinear dynamical system of equations, in general, can be

cast into Liénard system. From the Liénard system one can set up a perturbation theory

around the closed orbit of the center[48, 49, 58, 64]. The orbit is characterized by two con-

stants, the amplitude, A and the phase, θ , fixed by the two initial conditions. However, the

perturbation theory most likely diverges due to the presence of secular terms as the sep-

aration of time scale becomes large. Two renormalisation constants have to be introduced

to absorb these divergence. The renormalisation constants appear in terms of an arbitrary

time, say τ , which serves to fix the new initial condition which makes the amplitude and the

phase then dependent on τ . The value of x at t cannot depend on where one sets the initial

condition and hence
(

∂x
∂τ

)
t

= 0, which is the flow equation. This must give d A
dτ = p( A) and

dθ
dτ = q( A). If the system is of center-type then the initial condition sets the amplitude of

motion and hence d A
dτ = 0. The phase flow equation on the other hand normally furnishes

the nonlinear correction to the frequency. However, for an isochronous center there can be

no correction to the frequency and hence p( A) = 0 and q( A) = 0 identically. This implies

the amplitude, A is fixed once the initial condition is set[48]. Our objective is to derive the

condition for isochronicity[48, 49] from a Liénard equation and finally the relation between

the condition for being a stable limit cycle and the mutual relation.

First we find a simple Liénard system from (3.8) by taking some special order of the

power series in which n , m contribute starting from 0 to atmost 2 and from that we may

get a polynomial of highest degree atmost 3 in the damping force function for the Liénard

system. Using the above assumption, one can obtain,

F (ξ , ξ̇ ) = −
[

A01 +
2

∑
m>1

A0m ξ̇ m−1 +
2

∑
n ,m≥1

Anm (ξ + z s )n ξ̇ m−1

]
⇒ F (ξ , ξ̇ ) = −[ A01 + A02 ξ̇ + A11 ξ + A11 z s + A12 ξ ξ̇ + A12 z s ξ̇ + A21 ξ 2

+2 A21 ξ z s + A21 z2
s + A22 ξ 2 ξ̇ + 2 A22 ξ z s ξ̇ + A22 z2

s ξ̇ ] (3.11)
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and

G (ξ ) = −
[

A00 + A10 ξ + A10 z s + A20 ξ 2 + 2 A20 ξ z s + A20 z2
s
]

.

The condition for being stable limit cycle, F (0, 0) < 0 gives,

−
[

A01 + A11 z s + A21 z2
s
]
< 0 (3.12)

and (3.7) gives

A00 + A10 z s + A20 z2
s = 0 (3.13)

and therefore,

G (ξ ) = −[ A10 ξ + A20 ξ 2 + 2 A20 ξ z s ] .

As G (ξ ) must satisfy G (ξ ) = 0 at ξ = 0, thus the Liénard system becomes,

ξ̈ − [ A01 + A02 ξ̇ + A11 ξ + A11 z s + A12 ξ ξ̇ + A12 z s ξ̇ + A21 ξ 2 + 2 A21 ξ z s + A21 z2
s

+ A22 ξ 2 ξ̇ + 2 A22 ξ z s ξ̇ + A22 z2
s ξ̇ ] ξ̇ − [ A10 ξ + A20 ξ 2 + 2 A20 ξ z s ] = 0. (3.14)

Now if we set the condition other than stable limit cycle i.e. F (0, 0) = 0, for example, tak-

ing (3.12) as zero for some values of the parameters, then above equation on simplifying

becomes,

ξ̈ + ω2 ξ = A02 ξ̇ 2 + A11 ξ ξ̇ + A12 ξ ξ̇ 2 + A12 z s ξ̇ 2 + A21 ξ 2 ξ̇ + 2 A21 ξ z s ξ̇

+ A22 ξ 2 ξ̇ 2 + 2 A22 ξ z s ξ̇ 2 + A22 z2
s ξ̇ 2 + A20 ξ 2 (3.15)

where ω2 = −2 A20 z s − A10 must be +ve. Since ω is a real quantity and for ω2 < 0 then

G (ξ ) violate its property.

For book keeping purpose we introduce a positive λ, with λ << 1 and using on (3.15)

and discarding higher orders of λ we get,

ξ̈ + ω2 ξ = λ A20 ξ 2 + λ
[

A02 + A22 z2
s + A12 z s ] ξ̇ 2 + λ[ A11 + 2 A21 z s

]
ξ ξ̇ + O(λ2 ) . (3.16)

After that using RG technique[48], let us take a perturbation solution of ξ = ξ 0 + λξ 1 + λ2 ξ 2 +

λ3 ξ 3 + · · · · · · · · ·, i.e., ξ = ξ 0 + λξ 1 + O(λ2 ), to get an approximate solution of (3.16). So,

putting ξ and after simplifying (on neglecting O(λ2 )), we get,

(3.17)( ξ̈ 0 + ¨λξ 1 ) + ω2 (ξ 0 + λξ 1 ) = λ A20 ξ 2
0 + λ( A02 + A12 z s + A22 z2

s ) ξ̇ 0
2

+ λ( A11 + 2 A21 z s )ξ 0 ξ̇ 0 + O(λ2 ) .
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Comparing the coefficient of λ0, λ1 of both sides we get,

λ0 : ξ̈ 0 + ω2 ξ 0 = 0 (3.18)

λ1 : ξ̈ 1 + ω2 ξ 1 = A20 ξ 2
0 + ( A02 + A12 z s + A22 z2

s ) ξ̇ 0
2 + ( A11 + 2 A21 z s )ξ 0 ξ̇ 0 . (3.19)

If we take higher order terms then it must be included within O(λ2 ) and we simply neglect

here O(λ2 ). Let us set an initial condition ξ (t) = A and ˙ξ (t) = 0 at t = t0 with t0 being

the initial time, then by comparing λ as previously we get ξ 0 = A and ξ i = 0, ∀ i > 0 along

with ξ̇ i = 0, ∀ i ≥ 0 at t = t0.

Thus after solving above equations we get ξ 0 (t) and ξ 1 (t) as,

ξ 0 (t) = A cos ω (t − t0 )

(3.20)

ξ 1 (t) = −
[

A2 A20

3ω2 +
2 A2 ( A02 + A12 z s + A22 z2

s )
3

]
cos ω (t − t0 )

− A2 ( A11 + 2 A21 z s ) sin ω (t − t0 )
3ω

+
A2 A20

2

[
1

ω2 −
cos 2ω (t − t0 )

3ω2

]
+

( A02 + A12 z s + A22 z2
s )ω2 A2

2

[
1

ω2 +
cos 2ω (t − t0 )

3ω2

]
+

A2 ( A11 + 2 A21 z s ) sin 2ω (t − t0 )
6ω

.

So the approximate solution of ξ (t) is,

(3.21)

ξ (t) = A cos ω (t − t0 ) − λ

[
A2 A20

3ω2 +
2 A2 ( A02 + A12 z s + A22 z2

s )
3

]
cos ω (t − t0 )

− λ
A2 ( A11 + 2 A21 z s ) sin ω (t − t0 )

3ω
+ λ

A2 A20

2

[
1

ω2 −
cos 2ω (t − t0 )

3ω2

]
+ λ

( A02 + A12 z s + A22 z2
s )ω2 A2

2

[
1

ω2 +
cos 2ω (t − t0 )

3ω2

]
+ λ

A2 ( A11 + 2 A21 z s ) sin 2ω (t − t0 )
6ω

where A is the amplitude and ω is frequency supposing the constant −ω t0 = θ0. Then ξ (t)

becomes,

(3.22)

ξ (t) = A cos(ω t + θ0 ) − λ

[
A2 A20

3ω2 +
2 A2 ( A02 + A12 z s + A22 z2

s )
3

]
cos(ω t + θ0 )

− λ
A2 ( A11 + 2 A21 z s ) sin(ω t + θ0 )

3ω
+ λ

A2 A20

2

[
1

ω2 −
cos 2(ω t + θ0 )

3ω2

]
+ λ

( A02 + A12 z s + A22 z2
s )ω2 A2

2

[
1

ω2 +
cos 2(ω t + θ0 )

3ω2

]
+ λ

A2 ( A11 + 2 A21 z s ) sin 2(ω t + θ0 )
6ω

.
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At this point add another perturbation in the time interval (t − t0 ), by splitting (t − τ ) +

(τ − t0 ), where t0 < τ < t and τ is very close to t0 by defining the interval (t − τ ) as a

principal part and the remaining part (τ − t0 ) can be neglected because of smallness.

Suppose that taking perturbation the time interval, amplitude and phase will be slightly

changed from A to A(τ ) and θ0 to θ (τ ). From RG technique the relation between them are

A(τ ) = A
Z1 (τ , t0 ) and θ (τ ) = θ0 − Z2 (τ , t0 ), where

Z1 (τ , t0 ) = 1 + ∑∞
1 λn pn and Z2 (τ , t0 ) = 0 + ∑∞

1 λn qn . (3.23)

Neglecting terms of O(λ2 ) we get,

Z1 (τ , t0 ) = 1 + λ p1 + O(λ2 ) and Z2 (τ , t0 ) = λq1 + O(λ2 ) . (3.24)

Now if we put the function Z1 and Z2 as well as A and θ0 in (3.22) and remove the terms

which could led to divergence, we must get either p1 is zero or anything containing (τ − t0 )

and the same for q1 also. But because of the smallness of (τ − t0 ), we can take p1 and q1

approximately to be zero. So, after considering above, the constants A become A(τ ) and

θ0 become θ (τ ), i.e. they become dependent upon the time variable, τ . Also, if any term

multiplied directly by (t − t0 ) in the final solution of ξ (t), then we can convert it into (t − τ )

by neglecting the other part. But here no such terms are directly involved in this solution. So

ξ (t) becomes,

ξ (t) = A(τ ) cos(ω t + θ (τ ))

− λ

[
A2 (τ ) A20

3ω2 +
2 A2 (τ )( A02 + A12 z s + A22 z2

s )
3

]
cos(ω t + θ (τ ))

− λ
A2 (τ )( A11 + 2 A21 z s ) sin(ω t + θ (τ ))

3ω
+ λ

A2 (τ ) A20

2

[
1

ω2 −
cos 2(ω t + θ (τ ))

3ω2

]
+ λ

( A02 + A12 z s + A22 z2
s )ω2 A2 (τ )

2

[
1

ω2 +
cos 2(ω t + θ (τ ))

3ω2

]
+ λ

A2 (τ )( A11 + 2 A21 z s ) sin 2(ω t + θ (τ ))
6ω

.

(3.25)

Since the final solution cannot depend on the arbitrary time scale, τ , we impose the condition

( ∂ξ
∂τ ) t = 0 which leads to

d A
dτ

= 0 and dθ
dτ = 0. (3.26)

The independence of θ upon τ i.e. dθ
dτ = g( A) = 0 gives the condition for isochronicity. If

it is non-zero then the Liénard system would not be isochronous. Thus the system will be

isochronous for any values of A only when F (0, 0) = 0.
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Further, if d A
dτ = f ( A) then we can say there be a limit cycle if f ( A) 6= 0 and the radius

of the cycle can be obtained by making f ( A) = 0 if any non-zero A is found. Otherwise we

cannot have any limit cycle because we cannot get any idea about the radii of the cycle. If

this type of difficulty comes then we may call this as a center-type. When d A
dτ = f ( A) = 0

then it is also called center-type.

So, it is seen that, by pushing the condition F (0, 0) = 0 which is the constant portion

present in the damping force, the Liénard-type limit cycle oscillator transforms into an

isochronous oscillator and this is the only condition for being isochronous oscillator. For

F (0, 0) = 0, finally it shows that the Liénard system looses its stability as limit cycle and

becomes a center-type.

3.4 some chemical oscillator models

Here we consider a few chemical oscillator models as examples of open system. In open

systems there are some inputs and outputs, however, it is possible to attain a steady state

depending upon the values of the parameters in addition to dynamical complexities due

to the nonlinearities of the system of equations. Inspired by the above analysis of Liénard

system we now study some examples to check and verify the above results of limit cycle and

isochronicity.

3.4.1 Modified Brusselator model

The classical Brusselator model[33, 36, 50] is known to exhibit kinetics of model tri-molecular

irreversible reactions which are based on the vast studies of chemical oscillations[18–21, 75,

76] in various systems. The reduction of the Brusselator model in the form of Rayleigh[15, 22]

and Liénard form[40] of differential equations are already published. Here we have shown

the condition of limit cycle and isochronicity for a modified Brusselator model.

The original four variable reversible Brusselator model[50] which after appropriate elimi-

nation of variable results in a simple kinetics of relevant two variables[15] as

dx
dt

= a1 + x2 y − (α + b)x ,

dy
dt

= bx − x2 y, (3.27)

where x and y are the dimensionless concentration of some species. The parameters a1 , b , α >

0 follow the properties: a1 = µ(1 − β)a + µ β with a1 > 0 ⇒ either µ > 0 and a < β
1−β or

µ < 0 and a > β
1−β . Depending on the values of β one can choose the conditions accord-

ingly.
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Supposing z = x + y and u = a1 − αx one can transform (3.27) into one equation i.e.

ż = u . (3.28)

Here x and y can be expressed as

x = a1−u
α and y = z + u−a1

α . (3.29)

Differentiating (3.28) w.r.t. t we get,

z̈ = u̇ = −αa1 − αx2 y + α(α + b)x

⇒ z̈ =
(

ba1 +
a3

1
α2

)
− za2

1
α

+
2a1 z ż

α
− ż

(
α + b +

3a2
1

α2

)
+

3a1 ż2

α2 − ż3

α2 −
z ż2

α
.(3.30)

So if z s be the stationary point then ż and z̈ all are zero which shows from (3.30) as,

z s =
α

a2
1

(
ba1 +

a3
1

α2

)
. (3.31)

Taking perturbation around the fixed point z s i.e. z = z s + ξ with ż = ξ̇ and z̈ = ξ̈ and

substituting this in (3.30) and on simplification gives

ξ̈ + F (ξ , ξ̇ ) ξ̇ + G (ξ ) = 0 (3.32)

where the functions, F (ξ , ξ̇ ) and G (ξ ) are

F (ξ , ξ̇ ) = − 2a1 ξ

α
− b +

a2
1

α2 + α − 2a1 ξ̇

α2 +
b ξ̇

a1
+

ξ̇ 2

α2 +
ξ ξ̇

α
;

G (ξ ) =
a2

1 ξ

α
. (3.33)

This is Liénard system because all the conditions for being a Linéard oscillator which are

stated previously are satisfied by using the given conditions a1 , b , α > 0. Thus if there is

any stable limit cycle then it must satisfy F (0, 0) < 0 i.e.

a2
1 < (b − α)α2 . (3.34)

Now (3.32) can be written as,

ξ̈ + ω2 ξ =
2a1 ξ ξ̇

α
+
(

b − a2
1

α2 − α

)
ξ̇ +

(
2a1

α2 −
b
a1

)
ξ̇ 2 − ξ̇ 3

α2 −
ξ ξ̇ 2

α
; ω2 =

a2
1

α
> 0. (3.35)
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For book keeping purpose introducing λ(0 < λ << 1) in such a way that the above

equation can be expressed as,

ξ̈ + ω2 ξ = λ
2a1 ξ ξ̇

α
+
(

b − a2
1

α2 − α

)
ξ̇ + λ

(
2a1

α2 −
b
a1

)
ξ̇ 2 + O(λ2 ) (3.36)

(neglecting O(λ2 ) included terms)

To solve the equation by applying RG technique, we can take ξ = ξ 0 + λξ 1 + λ2 ξ 2 + · · ·
i.e. ξ = ξ 0 + λξ 1 + O(λ2 ), by neglecting O(λ2 ) terms. So putting ξ in (3.36) and equating

the coefficients of both sides for λ0 and λ1 we get,

λ0 : ξ̈ 0 + ω2 ξ 0 =
(

b − a2
1

α2 − α

)
ξ̇ 0 ,

λ1 : ξ̈ 1 + ω2 ξ 1 =
2a1 ξ 0 ξ̇ 0

α
+
(

b − a2
1

α2 − α

)
ξ̇ 1 +

(
2a1

α2 −
b
a1

)
ξ̇ 0

2 . (3.37)

Now if we treat the constant coefficient in F (ξ , ξ̇ ) as zero i.e. F (0, 0) = 0 or,
(

b − a2
1

α2 − α
)

=

0 then from (3.37) we have

λ0 : ξ̈ 0 + ω2 ξ 0 = 0,

λ1 : ξ̈ 1 + ω2 ξ 1 =
2a1 ξ 0 ξ̇ 0

α
+
(

2a1

α2 −
b
a1

)
ξ̇ 0

2 . (3.38)

Setting initial condition ξ (t) = A and ˙ξ (t) = 0 at t = t0, then by comparing λ we get ξ 0 = A

and ξ i = 0, ∀ i > 0 and ξ̇ i = 0, ∀ i ≥ 0 at t = t0. After solving (3.38), ξ 0 (t) and ξ 1 (t)

becomes,

ξ 0 (t) = A cos ω (t − t0 ) ,

(3.39)
ξ 1 (t) =

A2

2

(
2a1

α2 −
b
a1

)
{1 +

cos 2ω (t − t0 )
3

− 4 cos ω (t − t0 )
3

}

+
A2 a1

3ωα
{sin 2ω (t − t0 ) − 2 sin ω (t − t0 )} .

So, ξ (t) becomes ( on using θ0 = −ω t0),

ξ (t) = A cos(ω t + θ0 ) + λ

[
A2

2

(
2a1

α2 −
b
a1

)
{1 +

cos 2(ω t + θ0 )
3

− 4 cos(ω t + θ0 )
3

}

+
A2 a1

3ωα
{sin 2(ω t + θ0 ) − 2 sin(ω t + θ0 )}

]
.

(3.40)
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Now considering perturbation in the time interval (t − t0 ) by splitting (t − τ ) + (τ − t0 ),

where t0 < τ < t and τ is very close to t0, we define the interval (t − τ ) as principal part

and the remaining small part, (τ − t0 ) can be neglected.

Suppose here considering perturbation of the time interval the amplitude and the phase

slightly change from A to A(τ ) and θ0 to θ (τ ). From RG technique the relation between

them are A(τ ) = A
Z1 (τ , t0 ) and θ (τ ) = θ0 − Z2 (τ , t0 ) where

Z1 (τ , t0 ) = 1 + ∑∞
1 λn pn and Z2 (τ , t0 ) = 0 + ∑∞

1 λn qn . (3.41)

Since we are neglecting O(λ2 ) then from previous equation we get,

Z1 (τ , t0 ) = 1 + λ p1 + O(λ2 ) and Z2 (τ , t0 ) = λq1 + O(λ2 ) . (3.42)

If we put the functions Z1 and Z2 as well as A and θ0 in (3.40) and remove the terms

which could lead to divergence we must get either p1 is zero or anything containing (τ −
t0 ) and finally for q1. But because of the smallness of (τ − t0 ) we can take p1 and q1

approximately zero. So, after using the above argument the constant, A becomes A(τ ) and

constant θ0 becomes θ (τ ) i.e. they become dependent upon the time variable τ . Also, if any

term multiplied directly by (t − t0 ) in the final solution of ξ (t), then we can convert it into

(t − τ ) by neglecting the non-principal part.

Using all above considerations in Eq. (3.40), ξ (t) becomes,

(3.43)

ξ (t) = A(τ ) cos(ω t + θ (τ ))

+ λ

[
A2 (τ )

2

(
2a1

α2 −
b
a1

)
{1 +

cos 2(ω t + θ (τ ))
3

− 4 cos(ω t + θ (τ ))
3

}

+
A2 (τ )a1

3ωα
{sin 2(ω t + θ (τ )) − 2 sin(ω t + θ (τ ))}

]
.

So, finally under the condition
(

∂ξ
∂τ

)
| t = 0, since the final solution can not be dependent on

τ , (3.43) shows,

(3.44)

[
cos(ω t + θ (τ ))

+ λ A(τ )
(

2a1

α2 −
b
a1

)
{1 +

cos 2(ω t + θ (τ ))
3

− 4 cos(ω t + θ (τ ))
3

}

+
2λ A(τ )a1

3ωα
{sin 2(ω t + θ (τ )) − 2 sin(ω t + θ (τ ))}

]
d A
dτ

+
[
−A(τ ) sin(ω t + θ (τ )) +

λ A2 (τ )
2

(
2a1

α2 −
b
a1

)
{− 2 sin 2((ω t + θ (τ ))

3

+
4 sin(ω t + θ (τ ))

3
} +

2λ A2 (τ )a1

3ωα
{cos 2(ω t + θ (τ ))− cos(ω t + θ (τ ))

]
dθ

dτ
= 0.
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Since, A(τ ) 6= 0, a1 6= 0, α 6= 0, b 6= 0, ω 6= 0, then none of the above which are in third

brackets are zero. Therefore the only possible way to balance the equation is d A
dτ = 0 and

dθ
dτ = 0. So, this leads to isochronous oscillator of center-type and finally it cannot have any

limit cycle. Since, we know that a1 , b , α > 0 and a1 = µ(1 − β)a + µ β so this will give

either µ > 0 and a < β
1−β or µ < 0 and a > β

1−β . The parameters a and β are dependent

on each other. Now we deal with the positive region of parameters and we suppose µ = 1

and a = 1 which gives β > 0.5. For this set of parametric values the boundary condition

satisfies, a2
1 = (b − α)α2 which produces Fig. 3.1 in where parametric variation of alpha(α)

and b are shown in which the boundary line separates the region into stable limit cycle and

stable focus centerd for the modified Brusselator model. Fig. 3.2 shows a stable limit cycle

solution for suitable choice of parameters, µ = 1, a = 1, β = 0.6, α = 2 and b = 2.5 together

which satisfies the limit cycle condition, F (0, 0) < 0. Fig. 3.3 shows a center-type solution

satisfying F (0, 0) = 0 by taking suitable choice of parameters, µ = 1, a = 1, β = 0.6, α = 2

and b = 2.25. Since Fig. 3.3 is a center-type, it must be closer to the fixed point but not form

any limit cycle.

1.5 3 4.5
α

1.5

3

4.5

b

Stable limit cycle

Stable focus

Figure 3.1: Modified Brusselator model: Parametric space diagram for α and b in which the boundary
line separates the region into stable limit cycle and stable focus when µ = 1, a = 1 and
β = 0.6.

3.4.2 Glycolytic oscillator

The Glycolytic oscillator[6, 27, 77–79] is mainly observed in the yeast, which is described

with respect to its overall dynamics and biochemical properties of its enzyme phospho fruc-
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Figure 3.2: Modified Brusselator model: Phase portrait of (3.27) gives a stable limit cycle for suitable
choice of parameters, µ = 1, a = 1, β = 0.6, α = 2, b = 2.5 together which satisfies the limit
cycle condition, F(0, 0) < 0.

tokinase. Kinetic properties are complemented by the mathematical analysis of Sel’kov[6,

27] and related models[77]. Here we have considered its modified form for the oscillatory

Glycolysis in closed vessels by Merkin-Needham-Scott (MNS)[77] as

ẋ = −x + (a + x2)y

ẏ = b− (a + x2)y. (3.45)

with x and y corresponding to the intermediate species concentrations. The phosphofructok-

inase step considered by Sel’kov’s model and its MNS-generalization considers ATP to ADP

transition accompanying fructose-6-phosphate(F6P) to fructose-1,6-diphosphate(F1,6DP). The

parameter b means ATP influx and a is the rate of non-catalyzed side-steps (a side-process,

which needs to be taken into account for the closed vessel consideration, as shown by

MNS[77]). The fixed point of the system is at x = b, y = b
a+b2 . It is stable focus for a cer-

tain parameter range and an unstable focus for certain others. The crossover from stable to

unstable focus occurs on the boundary curve which is a locus of points in the a− b plane

where a Hopf bifurcation occurs i.e. the fixed point for those values of (a, b) is a center which

satisfies the equation (a + b2)2 + (a− b2) = 0 and can be obtained by checking condition for

stability or from the eigenvalues.
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Figure 3.3: Modified Brusselator model: Phase portrait of (3.27) gives a center-type solution when
F(0, 0) = 0 by taking suitable choice of parameters, µ = 1, a = 1, β = 0.6, α = 2, b = 2.25.

If we suppose z = x + y and u = b− x then we can transform (3.45) into a form i.e.

ż = u. (3.46)

Here x, y can be expressed as

x = (b− u) and y = (z− b + u). (3.47)

Differentiating (3.46) w.r.t. t and eliminating x and y gives,

z̈ = −(1 + a + 3b2)ż− (a + b2)z + (b + ab + b3) + 2bzż + 3bż2 − zż2 − ż3 (3.48)

If zs be the fixed point of z, for which ż, z̈ all are zero then,

zs = b +
b

a + b2 = k(say). (3.49)

Similarly as in previous case we take a perturbation around k i.e. z = k + ξ, ż = ξ̇ , z̈ = ξ̈, then

(3.48) gives a Liénard system,

ξ̈ + F(ξ , ξ̇)ξ̇ + G(ξ) = 0 (3.50)
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where

F(ξ , ξ̇) = (1 + a + 3b2)− 2bξ − 2bk− 3bξ̇ + ξξ̇ + kξ̇ + ξ̇2 and

G(ξ) = (a + b2)ξ . (3.51)

Note that all the conditions for a Liénard system are satisfied for suitable choice of a and b

which is also obvious for a ≥ 0 whatever b may be. So the condition for existence of stable

limit cycle is F(0, 0) < 0 i.e.

(a + b2) +
(a− b2)
(a + b2)

< 0. (3.52)

Suppose constant coefficient present in F(ξ , ξ̇) is taken as zero then (3.50) shows,

ξ̈ − {2bξ + 3bξ̇ − ξξ̇ − kξ̇ − ξ̇2}ξ̇ + (a + b2)ξ = 0

⇒ ξ̈ + (a + b2)ξ = 2bξξ̇ + 3bξ̇2 − ξξ̇2 − kξ̇2 − ξ̇3, (3.53)

Similarly we consider

ξ̈ + (a + b2)ξ = 2λbξξ̇ + 3λbξ̇2 − λ2ξξ̇2 − kλξ̇2 − λ2ξ̇3 (3.54)

where λ(0 < λ << 1). So, because of smallness of λ, neglecting O(λ2), one finds

ξ̈ + (a + b2)ξ = 2λbξξ̇ + 3λbξ̇2 − kλξ̇2 + O(λ2). (3.55)

Taking a perturbative solution of ξ as ξ = ξ0 + λξ1 + λ2ξ2 + λ3ξ3 + · · · i.e. ξ = ξ0 + λξ1 + O(λ2)

(neglecting O(λ2)) and using above perturbative solution and comparing the coefficients of

λ0, λ1 (3.55) gives,

λ0 : ξ̈0 + (a + b2)ξ0 = 0

λ1 : ξ̈1 + (a + b2)ξ1 = 2bξ0ξ̇0 + (3b− k)ξ̇0
2. (3.56)

Using the most general initial condition ξ(t) = A and ˙ξ(t) = 0 at t = t0, then by comparing λ

as similar as in previous case we must get ξ0 = A and ξi = 0, ∀i > 0 with ξ̇i = 0, ∀i ≥ 0 at

t = t0.

After solving (3.56), ξ0(t) and ξ1(t) becomes,

ξ0(t) = A cos ω(t− t0)
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and

(3.57)
ξ1(t) = −2bA2

3ω
sin ω(t − t0)− 2(3b − k)A2

3
cos ω(t − t0)

+
(3b − k)A2

2
{1 +

cos 2ω(t − t0)
3

} +
bA2

3ω
sin 2ω(t − t0)

where ω2 = (a + b2) > 0. So ξ(t) becomes,

(3.58)
ξ(t) = A cos ω(t − t0) + λ

[
−2bA2

3ω
sin ω(t − t0)− 2(3b − k)A2

3
cos ω(t − t0)

+
(3b − k)A2

2
{1 +

cos 2ω(t − t0)
3

} +
bA2

3ω
sin 2ω(t − t0)

]
.

If θ0 = −ωt0, then the above equation can be written as,

(3.59)
ξ(t) = A cos(ωt + θ0) + λ

[
−2bA2

3ω
sin(ωt + θ0)− 2(3b − k)A2

3
cos(ωt + θ0)

+
(3b − k)A2

2
{1 +

cos 2(ωt + θ0)
3

} +
bA2

3ω
sin 2(ωt + θ0)

]
.

Now adding another perturbation in the time interval (t− t0) by splitting (t− τ) + (τ − t0),

where t0 < τ < t and τ is very close to t0 we define the interval (t− τ) as a principal part

and the remaining part (τ − t0) can be neglected because of the smallness. Suppose that on

taking perturbation the time interval the amplitude and the phase slightly be changed from

A to A(τ) and θ0 to θ(τ). From RG technique the relation between them are A(τ) = A
Z1(τ,t0) ,

and θ(τ) = θ0 − Z2(τ, t0); where

Z1(τ, t0) = 1 + ∑∞
1 λn pn and Z2(τ, t0) = 0 + ∑∞

1 λnqn. (3.60)

Since we are neglecting O(λ2) then from previous equation we get,

Z1(τ, t0) = 1 + λp1 + O(λ2) and Z2(τ, t0) = λq1 + O(λ2). (3.61)

Now, if we put the functions Z1 and Z2 as well as A and θ0 in (3.59) and remove the terms

which could lead to divergence we must get either p1 is zero or anything containing (τ − t0)

and same for q1. But because of the smallness of (τ− t0) we can take p1 and q1 approximately

to zero.Using all above results in Eq. (3.59) we get,

(3.62)
ξ(t) = A(τ) cos(ωt + θ(τ)) + λ

[
−2bA2(τ)

3ω
sin(ωt + θ(τ))− 2(3b − k)A2(τ)

3
cos(ωt + θ(τ))

+
(3b − k)A2(τ)

2
{1 +

cos 2(ωt + θ(τ))
3

} +
bA2(τ)

3ω
sin 2(ωt + θ(τ))

]
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So finally under the condition as in RG method
(

∂ξ
∂τ

)
|t= 0 (3.62) gives ,

dA
dτ

= 0 and

dθ

dτ
= 0.

Since, a 6= 0, b 6= 0(⇒ ω 6= 0) and A(τ) 6= 0 then none of the above in brackets in the last

equation are zero which are obtained from RG condition. Therefore the only possible way is

balancing the equation by making them zero. So this leads to isochronous center-type and

finally it cannot have any limit cycle. So we can construct an isochronous oscillatory equation

from Liénard system by suitable choice of parameters which makes F(0, 0) = 0.

Fig. 3.5 gives a stable limit cycle for describing Glycolytic oscillator model when a and

b are chosen as 0.11 and 0.6, respectively, together satisfies limit cycle condition. Fig. 3.6

represents a center-type solution when a is fixed at zero and and b is fixed at 1 (which are

on the boundary point of Fig. 3.4 together which satisfies F(0, 0) = 0).

0 0.03 0.06 0.09 0.12
a

0

0.25

0.5

0.75

1

b

Stable Limit Cycle

Stable Focus

Figure 3.4: Glycolytic oscillator: Parametric phase portrait for the parameters, a and b in which the
boundary line separates the region into stable limit cycle(inner side) and stable focus(outer
side).

3.4.3 Van der Pol type oscillator model

Here we take an example of Van der Pol type oscillator. Van der Pol oscillator[10, 12, 46,

49] arises in many nonlinear dynamical systems including in chemical oscillation with cubic
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Figure 3.5: Glycolytic oscillator: Phase space diagram of (3.45) when a=0.11 and b=0.6 satisfies limit
cycle condition, F(0, 0) < 0 and gives a stable limit cycle.

nonlinear processes. This case is readily convertable to a Liénard oscillator form. Here we

show the conditions of limit cycle and isochronicity with a slightly different analysis than the

previous examples. The set of differential equation for Van der Pol type oscillator is given

as,

ẋ = y

ẏ = −εy(x2 − a2)−ω2x, a ∈ R. (3.63)

Originally in the Van der Pol oscillator equation a is 1. The size of the limit cycle depends

on the magnitude of a. Here our analysis is valid for a ∈ R, however, for the purpose of RG

analysis[46, 47] here we consider a little generalized form with ε as a smallness parameter

of perturbation although fixed by the Van der Pol system. There is a fixed point at the origin

which has a stable focus for ε < 0 and unstable focus for ε > 0. The fixed point is a center

for ε = 0. If we differentiate first equation w.r.t. t and use second equation we get

ẍ + εẋ(x2 − a2) + ω2x = 0. (3.64)

It is of Liénard form and gives a Van der Pol oscillator for a = 1. We now analyze the

model without taking any particular value of a. For this model the damping force is F(x, ẋ) =

ε(x2− a2) and G(x) = ω2x. So they satisfy all the conditions for being a Liénard system which

can be a limit cycle if F(0, 0) < 0 i.e. ∀a ∈ R 6=0 and ε > 0 (ε is very small). If ε < 0 then
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Figure 3.6: Glycolytic oscillator: Phase space diagram of (3.45) when a = 0 and b = 1 together which
satisfies F(0, 0) = 0 and gives a center i.e. a, b are on the boundary line of Fig. 3.4.

a2 < 0, which can not be possible for any real a. Now for further calculation we rewrite the

Eq. (3.64) as,

ẍ + ω2x = −εẋ(x2 − a2). (3.65)

Expanding x(t) as x(t) = x0(t) + εx1(t) + ε2x2(t) + · · ·, i.e. x(t) = x0(t) + εx1(t) + O(ε2), then

neglecting O(ε2) (0 < ε << 1) and from (3.65) by comparing the coefficients of ε0, ε1 we get,

ε0 : ẍ0 + ω2x0 = 0

ε1 : ẍ1 + ω2x1 = −ẋ0(x2
0 − a2). (3.66)

Using the general initial condition, x(t) = A and ˙x(t) = 0 at t = t0, then by comparing ε as

similar in previous case we get x0 = A and xi = 0, ∀i > 0 along with ẋi = 0, ∀i ≥ 0 at t = t0.

After solving (3.66), x0(t) and x1(t) becomes,

x0(t) = A cos ω(t− t0)

and

x1(t) = (7A3−16Aa2)
32ω sin ω(t− t0)− (A3−4Aa2)

8 (t− t0) cos ω(t− t0)− A3

32ω sin 3ω(t− t0). (3.67)
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Figure 3.7: Glycolytic oscillator: Phase portrait of (3.45) when parameters are chosen in such a way that
F(0, 0) > 0 i.e. a=0.13 and b=0.6 lie on stable focus.

Then x(t) becomes on using θ0 = −ωt0,

x(t) = A cos(ωt + θ0) + ε

[
(7A3 − 16Aa2)

32ω
sin(ωt + θ0)− (A3 − 4Aa2)

8
(t − t0) cos(ωt + θ0)−

A3

32ω
sin 3(ωt + θ0)

]
.

(3.68)

Now considering some perturbation in the time interval, (t− t0) by splitting (t− τ) + (τ− t0),

where t0 < τ < t and τ is very close to t0. We define the interval (t− τ) as a principal part

and the remaining part (τ − t0) can be neglected because of smallness.

Suppose that on taking perturbation on the time interval the amplitude and the phase

slightly be changed from A to A(τ) and θ0 to θ(τ). Then from RG technique the relation

between them are obtained as A(τ) = A
Z1(τ,t0) and θ(τ) = θ0 − Z2(τ, t0) where

Z1(τ, t0) = 1 +
∞

∑
1

εn pn and Z2(τ, t0) = 0 +
∞

∑
1

εnqn. (3.69)

Since we are neglecting O(ε2) then we obtain,

Z1(τ, t0) = 1 + εp1 + O(ε2) and Z2(τ, t0) = εq1 + O(ε2). (3.70)

Now if we put the functions Z1 and Z2 as well as A and θ0 in (3.68) and remove the terms

which could lead to divergence we must get either p1 is zero or anything containing (τ −
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t0) and the same for q1. But because of the smallness of (τ − t0) we can take p1 and q1

approximately to zero. So after using the above consideration the constant A becomes A(τ)

and constant θ0 becomes θ(τ) i.e. they become dependent upon the time variable, τ. Again if

any term is multiplied directly by (t− t0) in the final solution of x(t) then it can be converted

to (t − τ) by neglecting the non-principal part. Here a term is present which is directly

multiplied with (t− t0), so neglecting it and using all above results in Eq. (3.68) we get,

(3.71)
x(t) = A(τ) cos(ωt + θ(τ)) + ε

[
{7A3(τ)− 16A(τ)a2}

32ω
sin(ωt + θ(τ))−

{A3(τ)− 4A(τ)a2}
8

(t − τ) cos(ωt + θ(τ))− A3(τ)
32ω

sin 3(ωt + θ(τ))
]

.

Finally
(

∂x
∂τ

)
|t= 0 gives,

(3.72)

[
cos(ωt + θ(τ)) + ε{ (21A2(τ)− 16a2)

32ω
sin(ωt + θ(τ))

− (3A2(τ)− 4a2)
8

(t − τ) cos(ωt + θ(τ))− 3A2(τ)
32ω

sin 3(ωt + θ(τ))}
]

dA
dτ

+
[
−A(τ) sin(ωt + θ(τ)) + ε{ (7A3(τ)− 16a2A(τ))

32ω
cos(ωt + θ(τ))

+
(A3(τ)− 4a2A(τ))

8
(t − τ) sin(ωt + θ(τ))− 3A3(τ)

32ω
cos 3(ωt + θ(τ))}

]
dθ

dτ
=

−ε
(A3(τ)− 4a2A(τ))

8
cos(ωt + θ(τ))

which leads to

dA
dτ

=
εA(τ)

2
{a2 − A2(τ)

4
} and

dθ

dτ
= 0.

Now, if we convert the limit cycle condition, −εa2 < 0 to −εa2 = 0 i.e. a = 0 then it reduces

to dA
dτ = − εA3(τ)

8 and dθ
dτ = 0, showing an isochronous center-type solution. It also satisfies the

solution of Van der Pol oscillation, a = 1 analyzed in [49]. For a = 0, the oscillatory equation

also reduces to a center-type as ε→ 0 in the Van der Pol type system.

Fig. 3.8 shows a stable limit cycle oscillation when a = 0.5 and Fig. 3.9 shows a center-type

oscillation when a is fixed at zero. So we obtain a center-type oscillator which is isochronous.

Thus for F(0, 0) = 0, limit cycle breaks down and it gives an isochronous oscillator. It is

found numerically that a limit cycle can be obtained in this system for generalized Van der

Pol system, a ∈ R 6=0 when 0 < εa2 < 8.14 satisfies.
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Figure 3.8: Van der Pol oscillator: Phase portrait of (3.63) when a = 0.5 gives a stable limit cycle for
F(0, 0) < 0.

3.5 conclusion

By casting a class of chemical oscillations usually governed by two-variable kinetic equations

into the form of a Liénard oscillator here we have found the conditions of limit cycle and

isochronicity. It is shown that the conditions are dictated by the nonlinear damping coeffi-

cient and the potential or the forcing term which can be controlled by the suitable choice

of the experimental parameters of the chemical oscillators. Although the conditions of limit

cycle and isochronicity are shown here with two variables, this mathematical method along

with its numerical applicability can also be important for real higher order system. More

specifically the main findings in this work are as follows.

1. When the two-dimensional kinetic equations are transformed into a Liénard system of

equation the condition for limit cycle and isochronicity can be stated in a unified way. In

terms of the Liénard-type oscillator, the condition for limit cycle is given by F(0, 0) < 0

whereas for the condition of satisfying an isochronous oscillator is F(0, 0) = 0.

2. When the limit cycle condition i.e. F(0, 0) < 0 modifies to its boundary i.e. F(0, 0) = 0

depending on the suitable choice of parameters, the Liénard-type oscillator transforms

into an isochronous oscillator.

3. For any Liénard system, when it converts into an isochronous oscillator the system

looses its limit cycle stability and it becomes of center-type.
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Figure 3.9: Van der Pol oscillator: Phase space diagram of (3.63) when a = 0 satisfies F(0, 0) = 0 which
leads to a center.
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4
W H E N A N O S C I L L AT I N G C E N T E R I N A N O P E N S Y S T E M

U N D E R G O E S P O W E R L AW D E C AY

4.1 introduction

Dynamical systems[3, 10, 34, 54, 57, 61, 62] capable of having isochronous oscillations[48, 64,

80, 81] are very important from the point of view of modelling real-world systems[40, 48,

64] which exhibit self-sustained oscillation[11, 12, 63, 65]. The chemical oscillations[33, 36,

50, 74] are also of immense importance in biological world to maintain a cyclic steady state

e.g., Glycolytic oscillations[28, 77–79], Calcium oscillations[52], cell division[82], Circadian

oscillation[51, 83] and others[36]. Although a lot of work has been performed in finding ways

to determine if a system has a limit cycle, surprisingly a little is known about how to find

this and still it remains a highly active area of research[10, 28, 36, 80]. To obtain the nonlinear

dynamical features of a periodic orbit the general trend is to resort to a geometrical approach

coupled with tools of analysis[3, 34, 54, 57, 61, 62]. Recently Renormalisation Group (RG)

analysis[46, 47] is heavily used to probe the multi-scale oscillation in the nonlinear system.

A class of arbitrary autonomous kinetic equations in two variables are cast into the form of

a Liénard–Levinson–Smith (LLS) oscillator[34, 40, 48, 49, 64] characterized by the nonlinear

forcing and damping coefficients which can provide a unified approach to many problems

concerning the existence of limit cycle and center. Here1 our focus is to characterize the

properties of periodic orbits to distinguish among center and slowly decaying center-type

oscillation using an approximate solution of a class of two variable equations from a multi-

scale perturbation theory by Krylov–Bogolyubov (K-B) approach[34, 54]. Although there is a

condition which can distinguish limit cycle and center by using a constant part of damping

coefficient in LLS equation but still explicit dynamical behaviour of their differences are

not very well understood. We have shown the condition in which a center undergoes a

slowly decaying orbit and their long time behaviour. Here in addition to the usual geometric

disposition of periodic orbits with the shape and size in the steady state we have explored

1 Some portion of this chapter is published in the J. Math. Chem.-Saha et al. (2018)
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their asymptotic dynamics in terms of the energy consumption per cycle to distinguish these

types of periodic orbits which can appear in diverse situations.

In section (4.2), we have formulated the problem in terms of LLS oscillator. In section (4.3)

taking examples of various systems we have studied the dynamical consequences of limit

cycle, center and slowly decaying center-type in (a) Glycolytic oscillator, (b) Lotka-Volterra

model, (c) Van der Pol type oscillator and (d) time delayed nonlinear feedback oscillator. In

section (4.4), we have studied all the above examples analytically and numerically and the

main dynamical features of limit cycle, center and slowly decaying center-type are summa-

rized in a table. In later section (4.5), we have explored the source of slow decay of the center.

The chapter2 is concluded in section (4.6).

4.2 approximate solution of liénard–levinson–smith (lls) system : descrip-

tion of the problem

Let us consider a two-dimensional set of equations for open system,

dx
dt

= a0 + a1x + a2y + f (x, y),

dy
dt

= b0 + b1x + b2y + g(x, y), (4.1)

where x and y are populations of two intermediate species of a dynamical process with ai

and bi are all real parameters expressed in terms of the kinetic constants for all i = 0, 1, 2 with

f (x, y) and g(x, y) are nonlinear functions for which xs and ys are the steady state values.

Then we define a new pair of variables, (z, u) as

u = α0 + α1x + α2y,

z = β0 + β1x + β2y, (4.2)

where α0, α1, α2 and β0, β1, β2 are constants expressed in terms of ai and bi. Now considering

u and z in such a way that,

dz
dt

= u, (4.3)

one can obtain an equation of z̈ from the equation of u. Now, using the steady state value

zs = xs + ys one can find the LLS oscillator[10, 34, 40, 48, 64] for deviation from the stationary

point from z i.e. ξ(= z− zs) as

ξ̈ + F(ξ , ξ̇)ξ̇ + G(ξ) = 0 (4.4)

2 Some portion of this chapter is published in the J. Math. Chem.- Saha et al. (2018)
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where, F(ξ , ξ̇) is the damping function and G(ξ) = ω2ξ + O(ξ), is an odd polynomial. Let us

take m = |F(0, 0)| and rescaling the damping force function by F1(ξ , ξ̇) such that F(ξ , ξ̇) =

mF1(ξ , ξ̇), LLS equation can be rewritten as

ξ̈ + mF1(ξ, ξ̇)ξ̇ + G(ξ) = 0. (4.5)

An open system where oscillation is not straight forwardly obvious one can cast the two-

dimensional equations into LLS oscillator form which is amenable to multi-scale perturba-

tion analysis. Note that the nature of the defining quantity of limit cycle and center is given

by F1(0, 0) = j, say. For limit cycle solution, j = −1, for asymptotic solution, j = +1, and j = 0

if the nature of the solution of the system is center which means for the center case there is

no time independent damping part. In both center and slowly decaying center-type orbits

one can find, j = 0, so center and slowly decaying center-type orbits can not be distinguished

from the LLS equation form. From the linear stability analysis also one can not distinguish

center from slowly decaying center-type cases as, F(0, 0) = −2 (Real part of eigenvalue) = 0.

The question is what is the source of this slow decay?

Now rescaling the time variable t by τ with τ = ωt and ξ(t) changing to Z(τ), one can

obtain the form of a weakly nonlinear oscillator

Z̈(τ) + εh(Z(τ), Ż(τ)) + Z(τ) = 0, (4.6)

where ε = m
ω2 and h(Z, Ż) may contain nonlinear damping term in LLS oscillator or explicitly

time dependent terms for non-autonomous system such as time delayed oscillator and the

control parameter ε must lie in between 0 and 1 and more so if 0 < m � ω2, to have valid

perturbative expansion. Applying K-B with a running average U(τ) = ς
2π

∫ 2π
ς

0 U(s)ds over

each cycle with ς as the natural frequency of the system(4.6), one can obtain,

ṙ = 〈ε h(Z, Ż) sin(τ + φ(τ))〉τ = ϕ1(r, φ),

φ̇ = 〈ε h(Z, Ż)
r(τ)

cos(τ + φ(τ))〉τ = ϕ2(r, φ), (4.7)

where Z(τ) = r(τ) cos(τ + φ(τ)). Since ṙ(τ) and φ̇(τ) are of O(ε) then we may set the pertur-

bation on r and φ over one cycle as, r(τ) = r + O(ε) and φ(τ) = φ + O(ε). The functions ϕ1 and

ϕ2 can be obtained from the explicit form of h for the particular cases in the next section.

The above system is in a coupled form but most of the cases one can get decoupled set of

equations so called amplitude and phase equations otherwise it will be quite harder to solve

which is as good as the original system of equations; so it needs to be solved by further

approximation to get the amplitude equation. From K-B approach one can define the system
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energy, E = Z2+Ż2

2 along with the energy consumption per cycle, ∆E = d
dτ (πr2), where O(ε2)

terms are neglected.

4.3 some open systems and their comparative generic features

Here we have studied a few prototypical examples to study the dynamical nature of limit

cycle, center and slowly decaying center-type periodic orbits. The first class of examples are

from autonomous kinetic processes which are important in biology and chemistry, namely

Glycolytic oscillator[6, 27, 77–79], Lotka-Volterra model[10, 28, 36, 80] and a slightly gener-

alized version of Van der Pol type oscillator[10, 28, 87] which can be converted to Leinard

form. Next we have considered a non-autonomous system, a delay induced feedback model

of nonlinear oscillator with a cubic nonlinearity. In the delay model we can find both limit

cycle, center and slowly decaying center-type oscillators in different parameter range.

4.3.1 Glycolytic oscillator

The Glycolytic oscillator[6, 27, 77–79] is found in the glycolysis by yeast, which can be de-

scribed by the overall dynamics and biochemical properties of its enzyme phospho-fructokinase.

Kinetic properties are simplified by the mathematical analysis of Sel’kov[6, 27] and related

models[77]. Basic equations of a Glycolytic oscillation is given by

ẋ(t) = −x + (a + x2)y,

ẏ(t) = b− (a + x2)y, (4.8)

where x and y are the intermediate species concentrations with (xs = b, ys = b
a+b2 ) as the

fixed point. Considering, the above system in LLS form[87] and using the above procedure

in section 4.2, one can find the approximate solution of the above equation as

x(t) = b + ωr sin
(
ωt + φ

)
,

y(t) =
b

a + b2 + r{cos
(
ωt + φ

)
−ω sin

(
ωt + φ

)
} (4.9)

with

ṙ = −εr
8

(
3 ω2

m
r2 + 4j

)
,

φ̇ =
r2

8
(4.10)
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along with the approximate system energy E = 1
2

[
{x(t) + y(t)− zs}2 + {b−x(t)}2

ω2

]
. Now three

cases may arise as in this example, j can assume any of its three values. The condition of

having a stable limit cycle is given by j = −1, with the radius of the cycle 2
ω

√m
3 at t → ∞.

Next, the condition of having a stable fixed point is with j = 1 and in the asymptotic limit

radius goes to zero exponentially. And finally, the condition of having a decaying center-

type solution for j = 0, where the radius decays as a power law with asymptotic expression,

r ∝ t−
1
2 .

4.3.2 Lotka-Volterra model

Lotka-Volterra equation is the basic prey predator model[10, 28, 36, 80] which is known

to have an oscillatory solution and this oscillation is shown to be have a center. The prey

population is x and the predator population is y with the dynamical equation is given by,

ẋ(t) = αx− βxy,

ẏ(t) = −γy + δxy, (4.11)

with α, β, γ, δ > 0. The two fixed points are (xs = 0, ys = 0) and (xs = γ
δ , ys = α

β ) where the first

one is a saddle point and the later one gives a center solution obtained from linear stability

analysis. The LLS form of the above system (4.11) is given in Appendix B. The approximate

analytical solution takes the form,

x(t) =
γ

δ
+

r
zsδ
{γ cos

(
ωt + φ

)
−ω sin

(
ωt + φ

)
},

y(t) =
α

β
+

r
zsβ
{α cos

(
ωt + φ

)
+ ω sin

(
ωt + φ

)
}, (4.12)

and E = 1
2

[
{δx(t) + βy(t)− zs}2 + {αδx(t)−βγy(t)}2

ω2

]
. Here ṙ = 0 and φ̇ = 0, indicates no correction

in amplitude as well as phase are needed.

4.3.3 A generalised Van der Pol oscillator

We consider here a little generalised form of Van der Pol Oscillator[10, 28, 87] instead of

considering a = 1 which is traditionally used. This generalised system can provide both a

limit cycle, and a slowly decaying center-type solution by changing the parameter, a, unlike
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the traditional Van der Pol oscillator with only a Limit cycle solution with non-zero value of

ε1. Basic equations are given by,

ẋ(t) = y,

ẏ(t) = −ε1y(x2 − a2)−ω2x, (4.13)

where 0 < ε1 � 1 is a small perturbative constant and (xs = 0, ys = 0) is the only fixed point.

Considering LLS form[10, 87], finally one can obtain the approximate analytical solution

of the form,

x(t) = r cos
(
ωt + φ

)
,

y(t) = −ωr sin
(
ωt + φ

)
, (4.14)

where,

ṙ = − εr
8a2

(
r2 − 4a2) ,

φ̇ = 0, (4.15)

and E = 1
2

(
x2 + y2

ω2

)
with ε = ε1a2

ω .

For this system two cases can arise, a limit cycle and a slowly decaying center-type so-

lution. Condition of having a stable limit cycle for a real positive value of a, ṙ becomes,

ṙ = − εr
8a2

(
r2 − 4a2) which gives the radius of the limit cycle is 2a as t→ ∞. Again, the condi-

tion of having a slowly decaying center-type solution can be obtained for a = 0 which gives,

ṙ = − ε1
8 ω r3 and it gives a power law decay as t→ ∞ with r ∝ t−

1
2 .

4.3.4 Time delayed nonlinear feedback oscillator

Many nonlinear dynamical systems in various scientific disciplines are influenced by the

finite propagation time of signals in feedback loops modelled with a time delay[49, 261]. In

some systems, such as lasers and electro mechanical models, a large variety of delays appear.

We have provided a time delayed model to obtain both limit cycle, center and slowly decay-

ing center-type[49, 87] oscillation for different range of parameters of the system. There is no

general scheme to handle delay system using perturbation theory[262] to study bifurcation

or periodic orbit and characterization of the properties of oscillation in limit cycle, center

and slowly decaying center-type cases[49].

First we consider here a model of delay system where the oscillation is fed energy through

a delay term and its total energy increases with time. We have introduced a linear damping

term to make a center solution and then in presence of damping and delay when we intro-
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duce another quartic nonlinear term[74, 261] in the potential it gives a limit cycle and slowly

decaying center-type solution by tuning the parameters. The basic equations of the model

are

ẋ(t) = y(t),

ẏ(t) = −ε{x(t− td) + ẋ(ax2 + b)} −ω2x(t), (4.16)

where we have considered, 0 < ε � 1 is a small perturbative parameter and (0, 0) is the

only fixed point. So, it becomes a delayed Van der Pol system which induces energy into the

system. Using K-B averaging scheme one can have the analytical solution

x(t) = r cos
(
ωt + φ

)
,

y(t) = −ωr sin
(
ωt + φ

)
, (4.17)

where,

ṙ = −εr
8
{ar2 − 4

(
sin ωtd

ω
− b
)
},

φ̇ =
ε

2ω
cos(ωtd), (4.18)

and E = ω2x2+ẋ2

2 assuming 0 < td � 1.

4.4 numerical results for various open systems

Here we have numerically explored the characteristics of periodic orbits of limit cycle, center

and slowly decaying center-type cases in various physical systems namely, Glycolytic, Lokta-

Volterra and Van der Pol type oscillator and a delayed nonlinear feedback oscillator. We have

shown the validity of approximate amplitude equations in terms of the phase space and the

role of phase space dynamics. In these model systems we have shown the characteristic fea-

tures of limit cycle, center and slowly decaying center-type orbits through their asymptotic

approach to steady state in terms of a scaled radius and average energy consumption per

cycle.

As a starting example we consider Glycolytic Oscillator where for the different values of

the constants, a, b can provide limit cycle or a slowly decaying center-type orbit. At first we

discuss for the limit cycle case in this system which arises for a = 0.11, b = 0.6 and then

slowly decaying center-type case with a = 0, b = 1 with the initial condition(IC) of x = 0.55

and y = 1.45. Fig. 4.1 shows the phase space portrait of (a) a stable limit cycle and (b) slowly

decaying center-type oscillation where the dotted lines indicates the numerical simulation
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Figure 4.1: Glycolytic oscillator: (a) Limit cycle phase portrait with a = 0.11 and b = 0.6 and (b) slowly
decaying center-type phase portrait with a = 0 and b = 1, where dotted line indicates the
numerical simulation of the approximate analytical solution and the solid one is the exact
numerical solution of the system.

for the approximate solution and the solid one indicates the exact numerical solution. From

the Fig. 4.1(a) and Fig. 4.1(b), it is clear that the approximate solution shows the same nature

as the exact one and both gives the limit cycle solution except a phase lag. Reason can be

found in the non-zero value of φ̇ which brings a phase lag.

In 4.2(a-b) we have shown the dynamics of the scaled radius and energy consumption

per cycle of the limit cycle. In 4.2(c-d) similar features of the dynamics of scaled radius

and energy change per cycle of the slowly decaying center are shown. From Fig. 4.2(a) and

Fig. 4.2(c) we can say that in both limit cycle and slowly decaying center-type cases change

of energy per cycle must be zero in the long time limit, however, for the limit cycle it is

passed through a maximum as the IC is taken inside the limit-cycle. From Fig. 4.2(b) and

Fig. 4.2(d) the scaled radius in limit cycle and slowly decaying center-type cases approach

to steady state in a different manner. For limit cycle it becomes a constant and for slowly

decaying center it goes as power law decay as r(t) ≈ t−
1
2 . Fig. 4.2(d) gives a power law fitted

curve r(t) = A0(1 + A1t)−0.5 with A0 = 0.449517 and A1 = 0.151655.

In the next section we have analyzed the Lotka-Volterra equation with α = 1.3, β = 0.5, γ =

0.7, δ = 1.6 and ε = 0.1 with initial values x0 = 0.5 and y0 = 2.5. Fig. 4.3 shows a phase

portrait for the case of center of Lotka-Volterra system with the exact numerical(solid) and

approximate solution with amplitude equation(dashed). The dynamics of the scaled radius

is a constant from the initial time. Average energy consumption per cycle is zero from the

initial time for the case of center which is quite different from the case of limit cycle and

slowly decaying center-type orbit. The features of scaled radius and average energy per

cycle for the center is attributed to the fact that the initial point is always on the orbit for the

case of a center. Since here φ̇ = 0, there does not exist any phase lag between the exact and
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Figure 4.2: Glycolytic oscillator: For the limit cycle case(a-b) when the IC is inside the orbit: (a) energy
consumption per cycle goes to zero in the steady state after passing through a maximum;
(b) scaled radius of the limit cycle is shown. For the case of slowly decaying center-type:
(c)energy consumption per cycle starts with a very small negative value to reach zero as
time increases (d) the scaled radius decreases with a power law decay where the dotted
one is the fitting curve.

approximate centers shown in Fig. 4.3 which also reflects the energy change per cycle with

time which is zero as ṙ = 0 =⇒ r = r0 and depends on the initial value which defines the

radius of the center.

In the next section we have analyzed a little generalized version of Van der Pol equation

where a is a parameter unlike usual Van der Pol case(a = 1) with a = 0.5 for the limit cycle

and a = 0 for slowly decaying center-type case with ε = 0.5 and IC, (x0 = 2, y0 = 0) is taken

from outside of the cycle. Since here we find φ̇ = 0 then there does not exist any phase lag

between the two cycles where it is shown in Fig. 4.4 (phase portrait) and Fig. 4.5 shows

scaled radius and the energy consumption per cycle with time. In Fig. 4.5(a-b) shows the

energy consumption per cycle and scaled radius with time as expected from the limit cycle

case. Energy consumption per cycle would pass through a maximum if the IC would be

inside the orbit as in the Glycolytic case which is not shown in figure. In Fig. 4.5(c-d) it is
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Figure 4.3: Lotka-Volterra: Phase space graph of the center with α = 1.3, β = 0.5, γ = 0.7, δ = 1.6 and
ε = 0.1, where exact and approximate curves have no phase lag.

the slowly decaying center-type case which shows the energy consumption per cycle gives

the same behaviour as in 4.5(a) but the scaled radius with time gives a power law decay

with a fitted curve, r(t) = A0 + A1(1 + A2t)−0.5 with A0 = 0.000167043, A1 = 1.99394 and

A2 = 0.0498935.

For the delay model with no nonlinearity and damping, i.e, a = 0, b = 0 is a simple feedback

oscillator with continuously increasing energy in the system. The phase portraits are shown

in Fig. 4.6 and Fig. 4.7 with a finite delay, td = 0.623 with taking the parameters, ε = 0.05

and ω = 1 and the initial value x0 = 1.5 and y0 = 0.5. Fig. 4.6(b) shows the phase space effect

of delay (outer curve) in respect of non-delay (inner curve) in 3D with time. As in this case

both ṙ 6= 0 and φ̇ 6= 0 so there may exist a phase lag between the two phase space plots and

the lag increases with time delay.

In Fig. 4.7 we have shown the phase space curves in (a) feed back system with no damping

and nonlinearity where area is increasing, 4.7(b) a phase space for the center, 4.7(c) a limit

cycle and in 4.7(d) a slowly decaying center-type orbit for different parameters of a and b.

In Fig. 4.8 we have shown the time dependent nature of the scaled radius for different

parameters of a and b. In purely feedback system with no damping and nonlinearity almost

exponentially increasing radius in (a), 4.8(b) a radius is a constant from the initial time for

the center, 4.8(c) radius changes from its inital value to reach a constant corresponding to

a limit cycle and in 4.8(d) radius decreases slowly with power law decay for the case of a

slowly decaying center-type orbit.

In Fig. 4.9 we have shown the time dependent nature of the average energy consumption

per cycle(∆E) for different parameters of a and b. For feedback system with no damping
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Figure 4.4: Van der Pol type oscillator: (a) Limit cycle phase portrait for a = 0.5 and (b) slowly decaying
center-type phase portrait for a = 0 where ε is fixed with 0.5 in both cases. The dotted
lines indicates the numerical simulation of the approximate analytical solution and the
exact numerical solution of the system in the solid line.

and nonlinearity almost exponentially increasing ∆E in (a), 4.9(b) ∆E is a constant from

the initial time for the center, 4.9(c) ∆E changes from its inital value to its vanishing value

corresponding to a limit cycle and in 4.9(d) ∆E goes to zero from its initial value for a slowly

decaying center-type orbit.

The results of the numerical exploration are summarized in Table 4.1 to illustrate the

dynamical features of limit cycle, center and slowly decaying center-type orbits. The multi-

scale perturbation theory is adopted here from the Lecture notes of Strogatz which is based

on the K-B averaging method. It is applied for the LLS system and a non-autonomous system

of delayed nonlinear feedback model. The scaled amplitude equation generates all the results

of shape, size of the limit cycle, center and slowly decaying center-type orbits almost exactly

except in few limit cycle cases a phase lag is found which needs the equation of phase also to

be solved simultaneously. The amplitude equation can also be utilized as a stability criteria

where the nature of the periodic orbit can be explicitly assigned. This method is giving

comparable result with RG method which we have not shown here but checked analytically

and numerically. However, it can not give correct result for strongly nonlinear cases.
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Figure 4.5: Van der Pol type oscillator: For the limit cycle case(a-b) when the IC is outside the orbit: (a)
energy consumption per cycle starting from a negative value it goes to zero in the steady
state; (b) scaled radius of the limit cycle assumes a constant value in the steady state. For
the case of slowly decaying center-type: (c)energy consumption per cycle starts with a very
small negative value to reach zero as time increases (d)the scaled radius decreases with a
power law decay where the dotted one is the fitting curve.
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(b)

Figure 4.6: Time-delayed system: (a) Phase portrait of delay induced feedback oscillator with no damp-
ing and nonlinearity, a = 0, b = 0 with td = 0.623 (directly calculated in Mathematica) (b)
3D phase space plot of delay (outer curve) in respect of non-delay (inner curve) with time.

4.5 source of power law decay

We have shown in various two-dimensional open systems where the slowly decaying center

undergoes a power law decay with exponent 1
2 . The question is how a center undergoes a

power law decay? The source of power law decay can be traced in the nonlinear damping

function in the LLS system.

It is very straight forward to show that the restoring force will not affect the amplitude

equation. To show that we restrict ourselves to the case of LLS equation where the F(ξ , ξ̇) and

G(ξ) are the polynomial functions of ξ and ξ̇. It is well known that linear functional forms

of F and G preclude the existence of center. This can be readily seen by considering the

typical examples, e.g., a harmonic oscillator or a weakly nonlinear oscillator with a potential
1
2 ω2x2 + 1

3 λx4, 0 < λ < 1 or a Lotka-Volterra model, where one can encounter a center.

In LLS system F(ξ , ξ̇) and G(ξ) can be polynomial function of ξ and ξ̇ and depending on

the even-odd properties of F(ξ , ξ̇) and G(ξ) amplitude and phase of the oscillation affect the

center and limit cycle of the system. In what follows we employ K-B method of averaging

to show that the characteristic even and odd powers of polynomials play crucial role in

determining the behaviour of the associated amplitude and phase equations.

Unlike a harmonic oscillator which has a center solution, for a nonlinear damping case,

ẍ + ω2x = −λx3, 0 < λ � 1, one can find a decaying center solution[49]. Next, considering
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Figure 4.7: Time-delayed system: Phase space plots of the numerical simulation of the approximate
amplitude equation with the same time delay for (a) a = 0, b = 0 one gets a feedback system
with increasing phase space area, (b) a center with a = 0, b = Sin(ωtd)

ω , (c) a limit cycle with
a = 1, b < Sin(ωtd)

ω and (d) a slowly decaying center-type orbit with a = 1, b = Sin(ωtd)
ω
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Figure 4.8: Time-delayed system: Scaled radius is shown as a function of time in (a) increasing expo-
nentially for purely feedback case, in (b) a constant from the initial time for the center,
in (c) changes from its IC outside the cycle to reach a constant corresponding to a limit
cycle and in (d) decreases slowly with power law decay for the case of a slowly decaying
center-type orbit.
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Figure 4.9: Time-delayed system: The average energy consumption per cycle(∆E) is shown as a function
of time in (a) increasing exponentially for purely feedback case, in (b) a constant from
the initial time for the center, in (c) changes from its IC out side the cycle to reach zero
corresponding to a limit cycle and in (d) goes to zero for the case of a slowly decaying
center-type orbit.
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Dynamical features of limit cycle, center and slowly decaying center-type Orbits

Periodic Orbits

Steady State
Value (SSV) /
Approach to
Steady State
(ASS) whether
IC is inside or
outside

Limit Cycle Center slowly decaying
center-type orbit

Average scaled

radius (r)

•SSV A constant independent of Initial
Condition (IC)

A constant value de-
pending on IC

Asymptotically de-
creasing very slowly by
following Power Law
(∝ t

−

1

2 ) relaxation
•ASS (a)When IC is inside it increases

and saturates to a fixed value
As IC is always on the
orbit, it becomes fixed
from initial time

Same as SSV

(b) When IC is out side it de-
creases and saturates to a fixed
value

Average energy

consumption

per cycle (ΔE

•SSV Zero Zero Zero

= 2πr ṙ)
•ASS (a) When IC is inside it initially

increases within a very short re-
gion and passing through a peak
then gradually falls to zero

Fixed from initial time From a negative value
increases to zero

(b) When IC is outside it in-
creases from negative value to
zero

˙
φ •SSV Fixed value (Zero/ Non-zero) Fixed value (Zero/

Non-zero)
Almost Zero

•ASS (a) When IC is inside it initially
increases and then saturates to a
fixed value or Zero

Fixed value (Zero/
Non-zero)

Almost Zero

(b) When IC is outside it de-
creases and saturates to a fixed
value or Zero

ṙ •SSV Zero Zero Zero
•ASS (a) When IC is inside it initially

increases within a very short re-
gion and attains a maximum be-
fore going to zero

Zero throughout all
time

Increases from a nega-
tive value to zero

(b) When IC is outside it in-
creases from a negative value to
zero

Table 4.1: Dynamical features of limit cycle, center and decaying center-type orbits
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both damping and nonlinear restoring force, a typical example of Lotka-Volterra system

with LLS form (see Appendix B), ẍ + ε1(b1x + b2 ẋ)ẋ + ω2x + ε1b3x2 = 0, 0 < ε1 � 1, gives a

center solution. Here, the damping force function is of linear order and also odd as F(ξ , ξ̇) 6=
F(−ξ ,−ξ̇). From the various examples, it is not clear when a center undergoes power law

decay. So we would like to introduce a little more general scenario when it appears.

To begin with we consider polynomial functions of F(ξ , ξ̇) and G(ξ) with upto cubic power

of ξ̇ and ξ in the following reduced forms,

F(ξ , ξ̇) = −[A01 + A11ξ + A21ξ2 + A31ξ3 + A02ξ̇ + A12ξξ̇ + A22ξ2ξ̇ + A32ξ3ξ̇

+A03ξ̇2 + A13ξξ̇2 + A23ξ2ξ̇2 + A33ξ3ξ̇2],

G(ξ) = −[A10ξ + A20ξ2 + A30ξ3]. (4.19)

Let us take |F(0, 0)|= σ ∈ R+, an arbitrary constant with F(ξ, ξ̇) = σFσ(ξ , ξ̇). Then the LLS

equation can be rewritten as

ξ̈ + σFσ(ξ , ξ̇)ξ̇ + G(ξ) = 0. (4.20)

Therefore the final equation takes the form of a nonlinear oscillator after rescaling t by τ

taking, ωt→ τ as

Z̈(τ) + εh(Z(τ), Ż(τ)) + Z(τ) = 0, (4.21)

where, 0 < ε = σ
ω2 � 1, ω2 = −A10 > 0 and Z(τ) ≡ ξ(t) and Ż(τ) ≡ ξ̇(t). Eq. (4.21) is

amenable to averaging with K-B method which gives

(4.22)h(Z, Ż) =−
[
{B01 + B11Z + B21Z2 + B31Z3 + B02ωŻ + B12ZωŻ + B22Z2ωŻ + B32Z3ωŻ + B03ω2Ż2

+ B13Zω2Ż2 + B23Z2ω2Ż2 + B33Z3ω2Ż2}ωŻ + B20Z2 + B30Z3] ,

where Bij = Aij
σ , i, j = 1, 2, 3 are the corresponding indices. The amplitude and phase equa-

tions are obtained as,

ṙ =
εωr
16
{r2 (B23r2ω2 + 6B03ω2 + 2B21

)
+ 8B01} + O(ε2),

φ̇ = −εr2

16
(

B32r2ω2 + 2B12ω2 + 6B30
)

+ O(ε2). (4.23)

Now from a detailed analysis of the amplitude equation for ṙ, it is apparent that only even

elements of F(ξ , ξ̇) appears but none of the elements of G(ξ) is present due to the vanishing

value of the averages of sinµ cosν terms with µ = 1 and ν ∈ Z. The non-zero averages arise

only when µ, ν both are even i.e. µ = 2η1, ν = 2η2; η1, η2 ∈ Z. The power law solution of

amplitude with t−
1
2 can appear from Eq. (4.23) only when the right hand side contains r3
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term which means when A23 or B23 terms should be absent and there must be non-zero

positive value of any one of the terms, A03 and A21 should be present.

4.6 conclusions

By suitably adopting K-B averaging method in multi-scale perturbation theory for a periodic

system here we have provided the solution of a class of two variable open systems through

LLS form. The approximate K-B solution is shown to be almost exact for calculating phys-

ical properties with a set of diverse examples, namely, Glycolytic oscillator, Lotka-Volterra

system, a generalized Van der Pol oscillator and a time delayed nonlinear feedback oscillator.

To characterize a slowly decaying center-type oscillator one can find that even when the con-

stant part of damping force in LLS equation vanishes i.e, F(0, 0) = 0, the center may undergo

a slow decay and asymptotically gives a stable focus and the radius of the center undergoes

a power-law decay. Here we have investigated about the source of this power law decay and

in this context we have compared the asymptotic dynamics of the limit cycle, center and slow

decay of center-type orbit in various open systems and a generic feature of all these systems

are explored.

The condition of isochronicity which is usually defined as the amplitude independent

period of the orbit is utilized to characterize the dynamical features of limit cycle, center

and slowly decaying center-type orbits as pointed below. While the shape of the orbits are

shown in phase space of actual variables, the size of the orbit is studied by introducing an

average scaled radius variable and asymptotic approach of the orbits to steady state can be

understood from the scaled radius and energy consumption per cycle.

1. From the approximate solution we can find the limit cycle, center or slowly decaying

center-type motion almost exactly just by using the single variable equation of the

radius, so called amplitude equation. However, to get rid of the slight phase lag in the

limit cycle case one needs to solve the equation of phase variable coupled with radius

variable simultaneously.

2. The energy consumption per cycle ∆E, of the limit cycle vanishes at the steady state

depending on the position of the initial condition which can be inside or outside of the

cycle in a particular way: (a) when the initial condition is inside the cycle, it increases

initially to a maximum in a very short time and then goes to zero, (b) when the initial

condition is outside the cycle, ∆E increases from a negative value to zero. For the case

of a center quite distinctly it is zero from the initial time upto the steady state. For a

slowly decaying center, ∆E increases from a negative value to zero.
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3. Most interesting feature about the difference in center and slowly decaying center-type

oscillation, which is indistinguishable from the LLS equation form, i.e., F(0, 0) = 0,

the slowly decaying center-type case reveals a power law decay of the radius, t−
1
2

asymptotically unlike the center where the radius becomes almost constant from initial

time, however, ∆E for slowly decaying center-type oscillation arrives at zero in a finite

time.
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5
R E D U C T I O N O F K I N E T I C E Q U AT I O N S T O

L I É N A R D – L E V I N S O N – S M I T H ( L L S ) F O R M : C O U N T I N G L I M I T

C Y C L E S

5.1 introduction

Various open kinetic systems[10–12, 28, 36, 44] in physics, chemistry and biology, are gener-

ically described by a minimal model of autonomous coupled differential equations[3, 34,

54, 59, 60, 84] of two variables. A Rayleigh[17] equation in violin string and Van der Pol

oscillation in electric circuit are the classic examples, in this context. More generally, Lié-

nard[10, 39–43] equation underlines the concrete criteria for the existence of at least one

limit cycle for a general class of such systems of which Van der Pol is a special case of the

form ẍ + f (x)ẋ + x = 0 where f (x) = ε(x2 − 1) and Liénard transformation is ẋ = y − F(x)

and ẏ = −x with F(x) =
∫ x

0 f (τ)dτ. A further generalisation of Liénard equation is the

Liénard–Levinson–Smith (LLS) equation[41–44], ẍ + F(x, ẋ)ẋ + G(x) = 0, sometimes called the

generalised Liénard equation. Casting a general system of kinetic equations in two variables

which describe a variety of scenarios in physical, chemical, biochemical and ecological sci-

ences into LLS form[44] is often not straight-forward[10, 40, 44, 87]. To this end we have

provided a scheme for a wide class of open nonlinear equations, cast in the LLS form so that

the later becomes amenable to several techniques in nonlinear dynamics.

Our next objective1 is to find the nature and the number of limit cycles for a given LLS

equation thereby addressing the second part of the Hilbert’s 16th problem. The problem of

counting limit cycle has a long legacy since Hilbert, Smale and many others and still con-

tinues it without complete understanding[3, 39, 84, 255, 256, 259, 263, 264]. Our scheme is

based on the Krylov–Bogolyubov (K-B) method of averaging[10, 34, 54, 265], a variant of

multi-scale perturbation technique[10, 46, 47, 80] to derive amplitude equation with consid-

ering the polynomial forms of the nonlinear damping and restoring force functions. We have

illustrated our results on a variety of known model systems[39, 264, 266] with single and

multiple limit cycles[39, 264, 266].

1 Some portion of this chapter is published in the Int. J. Appl. Comp. Math.-Saha et al. (2019)
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In section (5.2), the problem have been formulated in terms of LLS oscillator to apply

perturbation theory where little a bit shorter version is provided to the reduction of kinetic

equations to LLS form. In section (5.3) perturbation theory is applied to find maximum

number of limit cycles for a LLS system. In section (5.4), we have reviewed various model

system starting from one cycle cases to k-cycle cases to establish a connection with the cycle

counting hypothesis. The chapter2 is finally concluded in section (5.5).

5.2 reduction of kinetic equations to liénard–levinson–smith (lls) form :

conditions for limit cycle

We consider here a set of two-dimensional autonomous kinetic equations for an open system.

Our aim is to cast the equations into a form of a variant of LLS oscillator[10, 40, 87] or LLS

oscillator[10, 34, 40, 44, 87] which can further be reduced to Rayleigh and Liénard form. Let

us begin with the system of autonomous kinetic equations

dx
dt

= a0 + a1x + a2y + f (x, y),

dy
dt

= b0 + b1x + b2y + g(x, y), (5.1)

where x(t) and y(t) are, for example, field variables or populations of species of chemical,

biological or ecological process [10–12, 28] with ai, bi for i = 0, 1, 2 are all real parameters

expressed in terms of the appropriate kinetic constants. Let, (xs, ys) be the fixed point of the

system and f (x, y) and g(x, y) are the nonlinear functions of x and y. A first step is shifting

the steady state (xs, ys) to the origin (0, 0) with the help of a linear transformation as LLS

system is a second order homogeneous ordinary differential equation (ODE).

The linear transformation can be chosen by introducing a new pair of variables (ξ, u), both

of which are functions of x and y where ξ = β0 + β1x + β2y with β0 = −(β1xs + β2ys) i.e.

ξ = β1(x− xs) + β2(y− ys) such that ξ̇ = u. β1, β2 are weighted constants such that it makes

the new steady state at the origin, ξs = 0, us = 0. u is expressed as u = α0 + α1x + α2y, with βi,

αi for i = 0, 1, 2 are all real constants which can be expressed in terms of system parameters.

From the inverse transformation we can easily obtain the expressions for x and y as given by

x = α2(β0−ξ)+β2(u−α0)
α1β2−α2β1

= L(ξ , u),

y = α1(ξ−β0)+β1(α0−u)
α1β2−α2β1

= K(ξ, u), (5.2)

2 Some portion of this chapter is published in the Int. J. Appl. Comp. Math.-Saha et al. (2019)
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provided that α1β2 − α2β1 6= 0. Differentiating again, ξ̇ = u with respect to the independent

variable t we get,

ξ̈ = u̇ = α1 ẋ + α2ẏ

= α1{a0 + a1L(ξ, ξ̇) + a2K(ξ, ξ̇) + ϕ(ξ, ξ̇)} + α2{b0 + b1L(ξ , ξ̇) + b2K(ξ , ξ̇) + φ(ξ, ξ̇)}, (5.3)

where, L(ξ , ξ̇) = c1ξ + c2ξ̇ + cL and K(ξ , ξ̇) = c3ξ + c4ξ̇ + cK with

c1 c2 cL

c3 c4 cK

 = 1
α1β2−α2β1−α2 β2 α2β0 − α0β2

α1 −β1 α0β1 − α1β0

. The functions ϕ and φ can be expressed as a power series ex-

pansion as,

ϕ(ξ , ξ̇) =
∞

∑
n,m=0

ϕnmξn ξ̇m and φ(ξ , ξ̇) =
∞

∑
n,m=0

φnmξn ξ̇m, (5.4)

with, φ(ξ , ξ̇) = µϕ(ξ, ξ̇), as the functions f and g are related through µ by g = µ f , µ ∈ R. So,

after putting the above form in equation (5.3) one can find,

ξ̈ = α1a0 + α1a1(c1ξ + c2ξ̇ + cL) + α1a2(c3ξ + c4ξ̇ + cK) + (α1 + µα2)
∞

∑
n,m=0

ϕnmξn ξ̇m

+α2b0 + α2b1(c1ξ + c2ξ̇ + cL) + α2b2(c3ξ + c4ξ̇ + cK), i.e.,

ξ̈ = A00 +

(
A10 + ∑

n>1
An0ξn−1

)
ξ +

(
A01 + ∑

n>0
An1ξn + ∑

n≥0
∑

m>1
Anmξn ξ̇m−1

)
ξ̇ , (5.5)

where, α1a0 + α2b0 + (α1 + µα2)ϕ00 + (α1a1 + α2b1)cL + (α1a2 + α2b2)cK = A00 = 0 (by definition of

a zero fixed point of ξ), A10 = α1(a1c1 + a2c3) + α2(b1c1 + b2c3) + (α1 + µα2)ϕ10, A01 = α1(a1c2 +

a2c4) + α2(b1c2 + b2c4) + (α1 + µα2)ϕ01, An0 = (α1 + µα2)ϕn0, An1 = (α1 + µα2)ϕn1 and Anm =

(α1 + µα2)ϕnm, where indices follow the values as given in the summation over m, n ∈ Z+.

Finally, the above equation looks like,

ξ̈ + F(ξ , ξ̇)ξ̇ + G(ξ) = 0, (5.6)

where, the functions F(ξ , ξ̇) and G(ξ) are given by

F(ξ, ξ̇) = −
[

A01 + ∑
n>0

An1ξn + ∑
n≥0

∑
m>1

Anmξn ξ̇m−1

]
,

G(ξ) = −
[

A10 + ∑
n>1

An0ξn−1

]
ξ . (5.7)
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Eq. (5.6) is a well known equation of generalised Liénard form called LLS equation. The

condition for existence of having at least a locally stable limit cycle of the dynamical system

is F(0, 0) < 0 =⇒ A01 > 0. It can be shown from the linear stability analysis that there

is a relation between F(0, 0) and eigenvalues (λ±) with, F(0, 0) = −2 Re(λ±). For a LLS

system, there are six conditions to have a limit cycle are given in [40, 42–44]. Out of these six

conditions, the condition F(0, 0) plays an important role to have a locally stable or unstable

limit cycle for such kind of system[34, 40, 44, 87] depending upon the sign of F(0, 0) is < 0

or > 0, respectively. In particular, two situations may arise:

I: For Anm = 0, with n ≥ 2, ∀m i.e. there be an unique steady state (ξs = 0) with restoring

force linear in ξ, then the above form of (5.6) looks like

ξ̈ + FR(ξ̇)ξ̇ + GR(ξ̇)ξ = 0, (5.8)

where,

FR(ξ̇) = −
[
A01 + ∑m>1 A0m ξ̇m−1] , GR(ξ̇) = −

[
A10 + ∑m>0 A1m ξ̇m] , (5.9)

which is in the form of generalised Rayleigh oscillator[17], the limit cycle condition modifies

to, FR(0) < 0.

II: For Anm = 0, with m ≥ 2, ∀n, which corresponds to Liénard equation with an unique

steady state (ξs = 0). This is of the form

ξ̈ + FL(ξ)ξ̇ + GL(ξ) = 0, (5.10)

where,

FL(ξ) = − [A01 + ∑n>0 An1ξn] , GL(ξ) = −
[
A10 + ∑n>1 An0ξn−1] ξ , (5.11)

where the limit cycle condition is FL(0) < 0. We know that, for a Liénard system, the damping

force function, FL(ξ) and the restoring force function, GL(ξ) are even and odd functions of ξ,

respectively.

However, for generalised Liénard or LLS system the odd-even properties of G(ξ) and F(ξ, ξ̇)

have complex ramifications[44] for practical systems. Here, we have examined the properties

with the help of K-B averaging method.

5.3 maximum number of limit cycles

We now restrict ourselves to the case of LLS systems where the F(ξ , ξ̇) and G(ξ) are the

polynomial functions of ξ and ξ̇. It is well known that linear functional forms of F and
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G preclude the existence of limit cycle. This can be readily seen by considering the typical

examples, e.g., a Harmonic oscillator or a weakly nonlinear oscillator with a potential 1
2 ω2

0x2 +
1
3 λx4, 0 < λ < 1 or a Lotka-Volterra model (see Appendix B), where one encounters a

center. We therefore consider the polynomial form of nonlinear damping function F(ξ , ξ̇) and

restoring force function G(ξ) for our analysis of limit cycle. In what follows we employ K-B

method of averaging to show that the characteristic even/odd powers of polynomials play

crucial role in determining the behaviour of the associated amplitude and phase equations.

To begin with we consider some fixed values of m, n of Eq. (5.7) to truncate the series at

M, N, for the highest power of ξ̇ and ξ, respectively. For explicit structure of a prototypical

example of an amplitude equation we choose upto M = N = 3 for illustration. This includes

all possible cases for the even and odd nature of F(ξ, ξ̇) and G(ξ), respectively. Then the

above form of F(ξ , ξ̇) and G(ξ) will be in the following reduced forms,

F(ξ , ξ̇) = −[A01 + A11ξ + A21ξ2 + A31ξ3 + A02ξ̇ + A12ξξ̇ + A22ξ2ξ̇ + A32ξ3ξ̇

+A03ξ̇2 + A13ξξ̇2 + A23ξ2ξ̇2 + A33ξ3ξ̇2],

G(ξ) = −[A10ξ + A20ξ2 + A30ξ3]. (5.12)

Let us take |F(0, 0)|= σ ∈ R+, an arbitrary constant with F(ξ, ξ̇) = σFσ(ξ , ξ̇). Then the LLS

equation can be rewritten as

ξ̈ + σFσ(ξ , ξ̇)ξ̇ + G(ξ) = 0. (5.13)

Therefore the final equation takes the form of a nonlinear oscillator after rescaling t by τ

taking, ωt→ τ as

Z̈(τ) + εh(Z(τ), Ż(τ)) + Z(τ) = 0, (5.14)

where, 0 < ε = σ
ω2 � 1, ω2 = −A10 > 0 and Z(τ) ≡ ξ(t) and ωŻ(τ) ≡ ξ̇(t). Eq. (5.14) is now

ready for the treatment using K-B method with

h(Z, Ż) = −
[
{B01 + B11Z + B21Z2 + B31Z3 + B02ωŻ + B12ZωŻ + B22Z2ωŻ +

B32Z3ωŻ + B03ω2Ż2 + B13Zω2Ż2 + B23Z2ω2Ż2 + B33Z3ω2Ż2}ωŻ + B20Z2 + B30Z3] ,
(5.15)

where Bij = Aij
σ , i, j = 0, 1, 2, 3 with B00 = 0 and B01 will take the fixed value, -1, 0, or 1

depending upon the nature of the fixed point is stable focus, center/center-type or limit

cycle, respectively. Now choosing, Z(τ) ≈ r(τ) cos(τ + φ(τ)) as a solution of Eq. (5.14) we

have Ż(τ) ≈ −r(τ) sin(τ + φ(τ)) with slowly varying radius r(τ) =
√

Z2 + Ż2 and phase

φ(τ) = −τ + tan−1(− Ż
Z ). The function h(Z, Ż) contains all the nonlinear terms and ε is the

nonlinearity controlling parameter i.e. one has to satisfy 0 < σ � ω2. Then one can obtain
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ṙ(τ) = εh sin(τ + φ(τ)) and φ̇(τ) = εh
r(τ) cos(τ + φ(τ)) i.e. the time derivative of amplitude

and phase are of O(ε). So, after taking a running average[10, 44, 54] of a time dependent

function U defined as, U(τ) = 1
2π

∫ 2π
0 U(s)ds, one finds, ṙ = 〈εh sin(τ + φ(τ))〉τ and φ̇ =

〈 εh
r(τ) cos(τ + φ(τ))〉τ, which gives,

ṙ =
εωr
16
{r2 (B23r2ω2 + 6B03ω2 + 2B21

)
+ 8B01} + O(ε2),

φ̇ = −εr2

16
(

B32r2ω2 + 2B12ω2 + 6B30
)

+ O(ε2). (5.16)

Now from a close look at the equation for ṙ, it is apparent that only even elements of

F(ξ , ξ̇) appears but none of any elements of G(ξ) is present due to the zero averages of

sinµ cosν terms with µ = 1 and ν ∈ Z. The non-zero averages arise only when µ, ν both are

even i.e. µ = 2η1, ν = 2η2; η1, η2 ∈ Z. Thus, the effect in ṙ appears only through the even

coefficients of F(ξ , ξ̇) i.e. by examining the respective variables in the ṙ equation, we find

that only some even coefficients appear for the first order correction. On the other hand φ̇

contains only even coefficients of F(ξ , ξ̇) which are not in amplitude equation along with odd

coefficients of G(ξ) which shows that only odd G(ξ) plays a role here.

So, from the equation of ṙ, one finds that there exist at most 4 non-zero values of r. If out

of the four roots every pair appears as conjugate then there are three possibilities. The cases

are, (i) two different sets of complex conjugate roots giving an asymptotically stable solution,

(ii) one pair of complex conjugate roots and two real roots of equal magnitude with opposite

sign implying a limit cycle solution having only one cycle and (iii) either four real roots of

equal magnitude with opposite sign having double multiplicity gives a limit cycle solution

with only one cycle or two different sets of real roots of equal magnitude with opposite sign,

may give limit cycle solution with two different cycles of different radius. The unique zero

values of the roots of r gives a center or center-type[166] situation. So, in short, the existence

of a non-zero real root will provide the radius of the cycle which will be stable or unstable

depending on the −ve or +ve sign of dṙ
dr , at r = rss and at rss = 0 dṙ

dr > 0 or < 0 gives the nature

of the fixed point.

As an example, for Kaiser model[55, 56, 85, 89, 90, 267–269], there exist three limit cycles

for a certain range of α, β. So, if we choose the parameters, α and β from the three limit cycle

zone then there exist six real roots with three different pairs i.e., three different radii exist

according to three cycles. But, slightly away from the three limit cycle zone, there will exist

only a pair of real roots with the same magnitude and other four will appear as a complex

conjugate pairs and together produces only a stable limit cycle.

Note that, to have a stable limit cycle solution, one condition must be satisfied i.e. F(0, 0) <

0. But, it fails to give how many limit cycles the system can admit. According to the root find-

ing algorithm one can guess the maximum number of cycles of a LLS system. The condition
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N M N + M Max. No. of Non-zero Max. No. of
Real Roots (Even) Cycle(s)

Even Even Even N + M− 2 = (N − 1) + (M− 1) N+M
2 − 1

Even Odd Odd N + M− 1 = (N) + (M− 1) N+M−1
2

Odd Even Odd N + M− 3 = (N − 2) + (M− 1) N+M−3
2

Odd Odd Even N + M− 2 = (N − 1) + (M− 1) N+M
2 − 1

Table 5.1: Maxumum number of limit cycles for LLS system

F(0, 0) < 0 plays an important role as a check for the existence of atleast one stable limit

cycle. But for 2-cycle situations one can have at first the locally unstable limit cycle before

locating the outer stable limit cycle and in this situation F(0, 0) > 0.

Based on these considerations we have prepared a Table 5.1 illustrating the possible cases

for the maximum number of non-zero real roots or the limit cycles. Now if we denote the

non-zero real values of r as an existence of limit cycles as r gives the radius of the cycle where

at the same time a pair of conjugate (one +ve and one −ve) roots of equal magnitude exists

for such kind of LLS systems then out of these two roots, radius will be measured by the

magnitude and each distinct magnitude counts the number of cycles. For example, if there

exists six roots, say, (p,−p) occurring twice and (q,−q) occurring once then the number of

cycles will be 2 of radius p and q, respectively. So, if there are all real roots occurring once,

then the number of cycles will be atmost N+M−2
2 or N+M−1

2 or N+M−3
2 . For LLS equation with

N, M are the maximum power of ξ and ξ̇ respectively, we have performed the K-B analysis

numerically for N = 10, M = 10. The result is given in Table 5.2. For Rayleigh system with

N = 1, for all M ≥ 1, maximum number of limit cycle will be M−1
2 or M−2

2 for odd or even

M, respectively. For Liénard system with M = 1 for all N ≥ 1, the maximum number of

limit cycle becomes N−1
2 or N

2 for odd or even N, respectively. The above table is valid for

an arbitrary finite polynomials of F and G. For the case of arbitrary infinite polynomial[255,

256, 259] cases maximum number of limit cycles can be stated for finite truncation.

5.4 applications to some model systems

Here we have examined three classes of physical models where the analysis of the maximum

number of limit cycles holds. This connection with the general model system is discussed

with polynomial damping and restoring force function.
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5.4.1 One-cycle cases: Van der Pol oscillator, Glycolytic oscillator, Brusselator model

Considering the Van der Pol oscillator[10, 11, 36, 54, 85, 87, 97] with equation, ẍ + ε(x2− 1)ẋ +

x = 0 having the weak nonlinearity for 0 < ε � 1 produces a locally stable limit cycle with

F(0, 0) < 0. So, if we compare with the general table we have N = 2 and M = 1. This gives a

condition for a unique stable limit cycle.

Next considering the Liénard form[87, 166] of Glycolytic oscillator[10, 11, 28, 36, 87, 166]

as,

ξ̈ +
[
(1 + a + 3b2)− 2bξ − 2bk− 3bξ̇ + ξξ̇ + kξ̇ + ξ̇2] ξ̇ + (a + b2)ξ = 0; a, b > 0, k = b +

b
a + b2 ,

has a unique stable limit cycle with F(0, 0) < 0[87] having N = 1 and M = 3. This gives one

limit cycle.

Furthermore, considering the Brusselator model having the Liénard form[28, 40, 87],

ξ̈ +
[
−2a1ξ

α
− b +

a2
1

α2 + α− 2a1ξ̇

α2 +
bξ̇

a1
+

ξ̇2

α2 +
ξξ̇

α

]
ξ̇ +

a2
1ξ

α
= 0; a1, b, α > 0

gives a unique stable limit cycle with F(0, 0) < 0[40, 87], where N = 1 and M = 3 again

giving rise to the same situation.

5.4.2 Two-cycle cases

We rewrite the Liénard form according to Ref.[39, 266] as, ˙x(t) = y(t)− F(x(t)), ˙y(t) = −x(t),

where F(x(t)) is an odd polynomial. After taking derivative it takes the following form ẍ +

F′(x)ẋ + x = 0, where F′(x) = ∂F(x)
∂x now becomes the form of an even polynomial. For F(x) =

a1x + a2x2 + a3x3, it has been shown[39, 266, 270] that the system allows a unique limit cycle

if a1a3 < 0, which will be stable if a1 < 0 and unstable if a1 > 0. This corresponds to the table

N = 2, M = 1. Further extension by Rychkov[271] shows that for F(x) = (a1x + a3x3 + a5x5)

the number of limit cycle is atmost two. Numerical simulation corroborates this observation

when F(x) is chosen as in Ref.[39, 266, 270], F(x) = 0.32x5− 4
3 x3 + 0.8x. For this case the inner

one is unstable limit cycle as F(0, 0) = 0.8 > 0 i.e. a stable fixed point but the outer one is

a stable limit cycle. Here, as per Table 5.1 we have N = 4 and M = 1. The above table thus

gives the strategies to find out the number of limit cycles(both stable and unstable) a system

can have. On the other hand our analysis by K-B method provides a hint towards a choice

of the parameter space for search of real roots of the radial equation.
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5.4.3 Three-cycles case: Kaiser bi-rhythmic model

Extending Van der Pol oscillator model with a nonlinear function of higher order polynomial,

Kaiser[55, 56, 85, 89, 90, 267–269] has described bi-rhythmicity with the nonlinear equation,

ẍ− µ(1− x2 + αx4 − βx6)ẋ + x = E cos Ωt. (5.17)

Here, α, β, µ > 0 tune the nonlinearity. This is a prototype self-sustained oscillatory sys-

tem in absence of E and Ω which are the amplitude and the frequency of the external

excitation, respectively. The model exhibits an extremely rich bifurcation behaviour and the

system actually produces bi-rhythmicity. It has been emphasized that in the undriven case,

the model is a multi-limit cycle oscillator and has three limit cycles, two of them are stable

and between the two stable limit cycles there is an unstable one which divides the basins

of attraction of the two stable cycles. In presence of E and Ω, the above system exhibits

some interesting features[55, 85, 89, 90, 267–269]. From Table 5.1 one has N = 6 and M = 1

with even-odd sub cases, while E = 0. Thus, there may have 6 roots for the radial equa-

tion if µ > 0 and α, β(controlling parameters of the radii) are chosen from three limit cycle

zone(α = 0.144, β = 0.005) and finally, the number of distinct values will be 3 which implies

that the system can have atmost three limit cycles (but here it is exactly 3). Further, if we

choose β = 0 for the above undriven Kaiser model with α = 0.1, one can have two limit cycles

with radii ≈ 2.35 and ≈ 3.80, respectively, of which the smaller one will be stable and the

larger one will be unstable.

Note that, if there are odd number of limit cycles, say l, then out of the l−cycles, l+1
2 will

be stable limit cycles and the remaining l−1
2 will be unstable limit cycles iff F(0, 0) < 0. For

example, for the Van der Pol oscillator, Glycolytic oscillator, Brusselator model etc. only one

limit cycle exists which is stable. For Kaiser model, l = 3 and one can observe the situations

accordingly. So, for odd number of cycles innermost one will be locally stable.

5.4.4 k-cycle cases:

5.4.4.1 A model with N = 1 and M = 2k + 1

For counting the number of limit cycles Gaiko[264] has shown, for a Liénard-type system

i.e., LLS equation having the form,

ẍ−
(

µ1 + µ2 ẋ + µ3 ẋ2 + · · · + µ2k ẋ2k−1 + µ2k+1 ẋ2k
)

ẋ + x = 0, (5.18)
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⊕, R M

1 2 3 4 5 6 7 8 9 10

1 2, 0 3, 0 4, 2 5, 2 6, 4 7, 4 8, 6 9, 6 10, 8 11, 8
2 3, 2 4, 2 5, 4 6, 4 7, 6 8, 6 9, 8 10, 8 11, 10 12, 10
3 4, 2 5, 2 6, 4 7, 4 8, 6 9, 6 10, 8 11, 8 12, 10 13, 10
4 5, 4 6, 4 7, 6 8, 6 9, 8 10, 8 11, 10 12, 10 13, 12 14, 12

N
5 6, 4 7, 4 8, 6 9, 6 10, 8 11, 8 12, 10 13, 10 14, 12 15, 12
6 7, 6 8, 6 9, 8 10, 8 11, 10 12, 10 13, 12 14, 12 15, 14 16, 14
7 8, 6 9, 6 10, 8 11, 8 12, 10 13, 10 14, 12 15, 12 16, 14 17, 14
8 9, 8 10, 8 11, 10 12, 10 13, 12 14, 12 15, 14 16, 14 17, 16 18, 16
9 10, 8 11, 8 12, 10 13, 10 14, 12 15, 12 16, 14 17, 14 18, 16 19, 16
10 11, 10 12, 10 13, 12 14, 12 15, 14 16, 14 17, 16 18, 16 19, 18 20, 18

Table 5.2: Table for highest degree polynomial N + M(⊕) for LLS system together with maximum
number of distinct conjugate roots(R), with 1 ≤ N, M ≤ 10

can have atmost k limit cycles if and only if, µ1 > 0. The result[264] correlates with our result.

For any value of k ∈ Z it fits the odd-odd case of the general table and accordingly, M and

N are 2k + 1 and 1, respectively, and finally the number of cycles will be atmost N+M
2 − 1 = k.

5.4.4.2 A model with N = 2k and M = 1

Blows and Lloyd[39, 272] have stated that “For the Liénard or LLS system ẋ = y− F(x), ẏ =

−g(x) with g(x) = x and F(x) = a1x + a2x2 + · · · + a2k+1x2k+1 has at most k local limit cycles

and there are coefficients with a1, a3, . . . , a2k+1 altering in sign". This can be found from the

Table 5.1 with N = 2k and M = 1 to give the condition of atmost k limit cycles. For example,

taking k = 3 with F(x) = −ε(72x − 392
3 x3 + 224

5 x5 − 128
35 x7) has exactly three limit cycles for

sufficiently small ε 6= 0 which are circles with radii 1, 2 and 3. The above statement nicely

corresponds to the Theorem-6, pp-260[39].

Counting the number of limit cycles through Renormalisation Group (RG) method in first

order will give similar result which was done by Das et. al.[255, 256, 259] for some models.

We have verified similar results for (3,3) polynomial cases for (F,G) functions using RG

method which become increasingly very difficult and almost impossible upto (10,10) case

than K-B averaging method as tabulated in this work. It is very useful to count the number

of limit cycles from the table by just looking at the LLS form. For example, the number of

limit cycles of all models in Ref.[255, 256, 259] along with the models in our work can be

estimated from our table. The table-I can also be utilized to prepare a model of a desired

number of limit cycles in a systematic way.
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5.5 conclusions

We have presented a scheme to cast a set of a class of coupled nonlinear equations in two

variables into a LLS form. By expressing the nonlinear damping and forcing functions as

polynomial we have implemented K-B method of averaging to explore the number of admis-

sible limit cycles of the dynamical systems. Our results can be summarised as follows:

1. For a LLS system, the number of limit cycles will be atmost N+M−2
2 when N and M

degree of the polynomials for damping and restoring force both are even or odd. Again,
N+M−1

2 cycles can be found when N is even and M is odd and finally, N+M−3
2 cycles

when N is odd and M is even.

2. For a Liénard system, in particular, the formula of counting the number of limit cycles

follows the same with M = 1 and N ∈ Z+. Also for the generalised Rayleigh situation

there occurs a linear restoring force so that N is 1 and M ∈ Z+ .

3. We have validated our general result with the help of a variety of physical systems

with one, two, three upto arbitrary k-cycles.

4. This method stated in our work can also be utilized to prepare a model of a desired

number of limit cycles in a systematic way.
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6
S Y S T E M AT I C D E S I G N I N G O F B I - R H Y T H M I C A N D T R I - R H Y T H M I C

M O D E L S I N FA M I L I E S O F VA N D E R P O L A N D R AY L E I G H

O S C I L L AT O R S

6.1 introduction

Both the Rayleigh or Van der Pol oscillators can be subsumed into a common form, i.e.,

Liénard–Levinson–Smith (LLS) oscillator[16, 40–44, 87, 96, 97], so that they can be viewed as

the two special cases[96] of LLS system. While the standard Rayleigh or Van der Pol oscilla-

tor allows single limit cycle, because of polynomial nature of nonlinear damping force and

restoring force functions, LLS system exhibits multi-rhythmicity[98, 99], i.e., one observes the

co-existence of multiple limit cycles in the dynamical system. In some biological systems na-

ture utilizes this multi-rhythmicity as models of regulation and in various auto-organisation

of cell signalling[28, 98–101]. In a related issue a bi-rhythmic model for Glycolytic oscillation

was proposed by Decorly and Goldbeter[102]. The coupling of two cellular oscillations[99]

also leads to multi-rhythmicity. By extending Van der Pol oscillator Kaiser had suggested a

bi-rhythmic model[55, 85] which has subsequently been used in several occasions[56, 89–92,

103].

In spite of several interesting studies in different contexts as mentioned above, a systematic

procedure for constructing a multi-rhythmic model with a desired number of limit cycles

is still lacking. Two problems must be clearly distinguished at this juncture. The first one

concerns of finding out the maximum number of limit cycles possible for a LLS system. The

problem has been addressed in Ref. [255, 256, 259] and also by us[96]. The second one, our

focal theme in this chapter1 is to systematically construct a minimal model with a desired

number of limit cycles starting from a LLS system with a single limit cycle. The essential

elements for this design is to choose the appropriate forms of polynomial damping and the

restoring force functions. A scheme for critical estimation of the associated parameters for

the polynomial functions and a smallness parameter is a necessary requirement. This non-

1 Some portion of this chapter is published in the Communications in Nonlinear Science and Numerical
Simulation-Saha et al. (2020)
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trivial systematization of parameter space allows us to construct the higher order variants of

both Van der Pol and Rayleigh oscillators with three, five and higher number of limit cycles.

As illustration, we have proposed two cases of Van der Pol family; first one concerns five

limit cycles of which three are stable and two are unstable dividing the basins of attractions.

Second one is an alternative version of the bi-rhythmic Kaiser system[55, 85]. We have also

proposed the bi- and tri-rhythmic models for the Rayleigh family of oscillators which are

hitherto unknown to the best of our knowledge in the context of nonlinear oscillators. Our

analysis shows while the mono-rhythmic Rayleigh and Van der Pol oscillators are unique,

their bi- or tri-rhythmic or higher order variants may assume different forms depending on

the nature of the polynomial functions. Our theoretical analysis is corroborated by detailed

numerical simulations.

In section (6.2), the counting of number of limit cycles for polynomial damping and restor-

ing force functions of a Liénard–Levinson–Smith (LLS) system is revisited. The generalisation

of single-cycle oscillator to multicycle cases is discussed in section (6.3) by reviewing vari-

ous model systems starting from one cycle cases to k-cycle cases through the classification

of two families — one is Van der Pol family (section 6.3.1) and the another one is Rayleigh

family (section 6.3.2). Construction of new families of Van der Pol and Rayleigh oscillators

with multiple limit cycles (such as bi-rhythmic and tri-rhythmic) and their alternative forms

are discussed in section 6.4 through a detailed investigation. Bi-rhythmicity apart from LLS

system is discussed in section 6.5 where the full study is given in Appendix C. Section 6.6

describes a complete flow chart to have multi-rhythmic systems along with some concluding

remarks.

6.2 polynomial damping and restoring force functions for liénard–levinson–

smith (lls) system ; number of limit cycles

We begin with a class of LLS equation of the following form

ξ̈ + F(ξ , ξ̇)ξ̇ + G(ξ) = 0, (6.1)

where, F(ξ, ξ̇) and G(ξ) being the polynomial functions as given by

F(ξ , ξ̇) = −
[

A01 + ∑
n>0

An1ξn + ∑
n≥0

∑
m>1

Anmξn ξ̇m−1

]
,

G(ξ) = −
[

A10 + ∑
n>1

An0ξn−1

]
ξ . (6.2)
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They refer to the nonlinear damping and force functions, respectively. Depending on the

several conditions[40–44]on F and G for the existence of at least one locally stable limit cycle

for dynamical model, the following two cases can appear:

I : When Anm = 0, n ≥ 2, ∀m, the above form of Eq. (6.1) takes the form,

ξ̈ + FR(ξ̇)ξ̇ + GR(ξ̇)ξ = 0, (6.3)

where,

FR(ξ̇) = −
[
A01 + ∑m>1 A0m ξ̇m−1] , GR(ξ̇) = −

[
A10 + ∑m>0 A1m ξ̇m] , (6.4)

with the steady state (ξs = 0) for a restoring force which is linear in ξ. It is a form of

generalised Rayleigh oscillator[16] where the condition of limit cycle reduces to, FR(0) < 0.

One can have FR(ξ̇) = ε(ξ̇2 − 1) and GR(ξ̇) = 1 for the special case of Rayleigh oscillator.

II : When Anm = 0, m ≥ 2, ∀n, gives a Liénard equation with the steady state (ξs = 0). The

oscillator form can be written as

ξ̈ + FL(ξ)ξ̇ + GL(ξ) = 0, (6.5)

with,

FL(ξ) = − [A01 + ∑n>0 An1ξn] , GL(ξ) = −
[
A10 + ∑n>1 An0ξn−1] ξ , (6.6)

where the condition of limit cycle is FL(0) < 0. It is to be noted that for a Liénard system

FL(ξ) and GL(ξ) are even and odd functions of ξ, respectively. With the special case of Van

der Pol oscillator we have FL(ξ) = ε(ξ2 − 1) and GL(ξ) = ξ .

Eq. (6.1) is the starting point of our analysis. In a recent communication it has been shown

that by implementing Krylov–Bogolyubov (K-B) method [34, 54, 86, 96, 265] one can estimate

the maximum number of limit cycles admissible by a dynamical system. Here the basic idea

is to introduce the scaled time ωt→ τ and the transformed variables ξ → Z, ξ̇ → ωŻ so that

Z(τ) and Ż(τ) can be expressed as Z(τ) ≈ r(τ) cos(τ + φ(τ)) and Ż(τ) ≈ −r(τ) sin(τ + φ(τ)).

K-B averages leads us to the equations for average amplitude r and average phase φ. To

proceed further we first terminate the series upto the value, M, N, as the highest power of ξ̇

and ξ, respectively. For an amplitude equation we take M = N upto 3. It covers all possible
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even and odd functions of F(ξ , ξ̇) and G(ξ), respectively. Such forms of F(ξ , ξ̇) and G(ξ) are

reduced to the forms given below,

F(ξ , ξ̇) = −[A01 + A11ξ + A21ξ2 + A31ξ3 + A02ξ̇ + A12ξξ̇ + A22ξ2ξ̇ + A32ξ3ξ̇

+A03ξ̇2 + A13ξξ̇2 + A23ξ2ξ̇2 + A33ξ3ξ̇2],

G(ξ) = −[A10ξ + A20ξ2 + A30ξ3]. (6.7)

Abbreviating |F(0, 0)|= σ ∈ R+, with F(ξ , ξ̇) = σFσ(ξ , ξ̇), the LLS equation after rescaling can

be rewritten as

Z̈(τ) + ε h(Z(τ), Ż(τ)) + Z(τ) = 0, (6.8)

where, 0 < ε = σ
ω2 � 1, ω2 = −A10 > 0 and Z(τ) ≡ ξ(t) with ωŻ(τ) ≡ ξ̇(t) and h can be

expressed as

h(Z, Ż) = −
[
{H1 + H2 + H3}ωŻ + B20Z2 + B30Z3] , (6.9)

where, H1 = B01 + B11Z + B21Z2 + B31Z3, H2 = B02ωŻ + B12ZωŻ + B22Z2ωŻ + B32Z3ωŻ, H3 =

B03ω2Ż2 + B13Zω2Ż2 + B23Z2ω2Ż2 + B33Z3ω2Ż2 and Bij = Aij
σ , i, j = 0, 1, 2, 3 are the correspond-

ing indices with B0,0 = 0 and B01 takes the values (-1, 0, 1) depending on the property of the

fixed point (asymptotically stable, center, limit cycle), respectively. K-B averaging yields the

following amplitude and phase equations,

ṙ =
εωr
16
{r2 (B23r2ω2 + 6B03ω2 + 2B21

)
+ 8B01} + O(ε2),

φ̇ = −εr2

16
(

B32r2ω2 + 2B12ω2 + 6B30
)

+ O(ε2). (6.10)

A close scrutiny reveals that the effect on ṙ arises only in terms of the even coefficients of

F(ξ , ξ̇) in first order approximation. Again, only odd polynomial G(ξ) plays a role in phase

equation. One thus finds at most four non-zero values of r having three distinct possibilities:

(a) two sets of complex conjugate roots with asymptotically stable solution, (b) one pair

of complex conjugate roots along with two real roots of equal magnitude having opposite

sign giving a limit cycle solution and (c) either four real roots of equal magnitude of double

multiplicity with opposite sign gives a limit cycle solution or two different sets of real roots of

equal magnitude having opposite sign will provide limit cycle solutions of different radius.

The roots of r with unique zero value gives a center [49, 97]. The stability of the cycles

thus can be examined by the −ve or +ve sign of dṙ
dr |r=rss where dṙ

dr |r=rss=0> 0 or < 0 which

determines the nature of the fixed point. Note that the limit cycle condition, F(0, 0) < 0 fails

to give any clue about the number of limit cycles a system can admit. According to the root

101



finding algorithm one can guess the maximum number of limit cycles of a LLS system[96,

255, 256].

On a more general footing we have three possible combinations for having the maximum

number of limit cycles or distinct non-zero real roots, which are given below:

Case-I : For both even or odd N and M there exist maximum N+M
2 − 1 limit cycles.

Case-II : For even N and odd M there exist maximum N+M−1
2 limit cycles.

Case-III : For odd N and even M there exist maximum N+M−3
2 limit cycles.

Determination of maximum number of possible limit cycles does not necessarily ensure

the explicit functional form of the polynomials for damping and restoring forces, since the

magnitude of the coefficients remain unknown. An important step in this direction is the sys-

tematic estimation of the parameter values or the coefficients of the polynomials for practical

realisation of the oscillator with multiple limit cycles. In the next two sections we proceed to

deal with this issue.

6.3 on the generalisation of single-cycle oscillator to multicycle cases

We now introduce the models for multicycle cases for Van der Pol and Rayleigh family of

oscillators for k-cycles. In view of the above approach, we begin examining some physical

models by classifying them according to single, two, three and k cycles for both families of

oscillators which are available in the literature. The connection is discussed for the general

model system with reference to the polynomial form of damping and restoring forces.

6.3.1 Van der Pol family of cycles

For Van der Pol family of oscillators with k-cycles[39, 270, 272] the equation in the LLS form

is

ẍ + (a1 + a2x + · · · + a2k+1x2k)ẋ + x = 0. (6.11)

Considering the special case of Van der Pol oscillator developed by equation, ẍ + ε(x2 −
1)ẋ + x = 0 for weak nonlinearity with 0 < ε � 1, we obtain a stable limit cycle with

F(0, 0) < 0. By referring to the earlier case-II as considered in the last section we have N = 2

and M = 1, which gives a unique stable limit cycle.
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Two cycle cases are relatively rare. We rewrite the Liénard equation in the standard form

as, ˙x(t) = y(t) − F(x(t)), ˙y(t) = −x(t) with F(x(t)) being an odd polynomial. Subsequently

we have, ẍ + F′(x)ẋ + x = 0 with F′(x) = ∂F(x)
∂x which now becomes an even polynomial.

For F(x) = a1x + a2x2 + a3x3, it has been shown[39, 266, 270, 272] that the system has a

unique limit cycle if a1a3 < 0, which will be stable if a1 < 0 and unstable if a1 > 0. It

corresponds to case-II for N = 2, M = 1. It is further extended by Rychkov[271] and showed

that for F(x) = (a1x + a3x3 + a5x5) the number of limit cycles is at most two. This observation

corroborates with the numerical simulation when F(x) is chosen[39, 266, 270, 272] as, F(x) =

0.32x5 − 4
3 x3 + 0.8x. Here the inner limit cycle is an unstable one as F(0, 0) = 0.8 > 0 but the

outer one is stable. This correspond to case-II with N = 4 and M = 1.

Extended Van der Pol oscillator for three cycle case is coined by Kaiser[55, 56, 85, 89, 90,

267] which is described as bi-rhythmicity, having the form,

ẍ− µ(1− x2 + αx4 − βx6)ẋ + x = 0. (6.12)

Here the parameters α, β, µ > 0 of the model provides an extremely rich variety of bifur-

cation phenomena and it exhibits bi-rhythmicity. The model allows three limit cycles with

two stable cycle and in between the two stable limit cycles there will be an unstable one di-

viding the basins of attraction. In presence of an external electric field for the driven Kaiser

model, the system shows some interesting phenomena[55, 56, 85, 89, 90, 267]. This model

corresponds to the case-II with N = 6 and M = 1. Therefore six roots may arise from the

amplitude equation for µ > 0 and the controlling parameters, (α, β) have to be chosen from

the zone of three limit cycles. Furthermore for β = 0, the undriven Kaiser model with α = 0.1

gives two limit cycles of which the smaller one will be stable and the larger one will be unsta-

ble. For LLS system, Blows and Lloyd[39, 272] have showed that, ẋ = y− F(x), ẏ = −g(x) with

g(x) = x and F(x) = a1x + a2x2 + · · · + a2k+1x2k+1 has at most k limit cycles for the cases where

the coefficients, a1, a3, . . . , a2k+1 alternates in sign. This corresponds to the case for N = 2k

and M = 1 as the condition of at most k limit cycles.

6.3.2 Rayleigh family of cycles

For Rayleigh family of oscillators with k-cycles[264] the equation may be written in LLS form

as ,

ẍ−
(

µ1 + µ2 ẋ + µ3 ẋ2 + · · · + µ2k ẋ2k−1 + µ2k+1 ẋ2k
)

ẋ + x = 0, (6.13)
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Furthermore, considering the special case of ordinary Rayleigh oscillator[9, 16],

ẍ +
(
η1 ẋ2 − η2

)
ẋ + ω2x = 0, η1, η2, ω > 0,

one obtains an unique stable limit cycle for η2 > 0. It corresponds to the case-I with N = 1

and M = 3.

Multiple limit cycles[39, 264, 266] in Rayleigh family are not known in literature. Gaiko[264]

has shown through geometrical approach that for a Liénard-type system having the form of

Eq. (6.13), one can have at most k limit cycles iff µ1 > 0 and no physical example is available.

This result[264] is nicely matched[96] and for any value of k ∈ Z it corresponds to the odd-

odd subcase (see case-I) with M = 2k + 1 and N = 1 which subsequently gives the at most
N+M

2 − 1 = k number of cycles.

6.4 construction of new families of van der pol and rayleigh oscillators

with multiple limit cycles

Having discussed the bi-rhythmic Van der Pol oscillator, i.e, the Kaiser model, we now ex-

plore tri-rhythmic cases as further generalizations. We begin with alternative generalisation

of Van der Pol system for bi-rhythmic and tri-rhythmic cases with higher powers of velocity

variables. Similarly, bi-rhythmic and tri-rhythmic models are worked out for the family of

Rayleigh oscillator.

6.4.1 Van der Pol family of oscillators

6.4.1.1 Generalisation of Van der Pol system; three stable limit cycles

We return to LLS oscillator and extend the Kaiser model by keeping a proper combination

of N and M for case-II and an alternate sign condition on the coefficients of polynomial[39,

272]. An extended model beyond Kaiser that includes one more stable limit cycle can be

written as,

ẍ− µ(1− x2 + αx4 − βx6 + γx8 − δx10)ẋ + x = 0, 0 < µ� 1. (6.14)

Here µ is the Hopf bifurcation parameter as in Van der Pol model with the system param-

eters, α, β, γ, δ > 0. According to case-II the maximum number of limit cycles the system

can give is 10+1−1
2 = 5. Further extension of Kaiser model leaving the parameter space (α, β)
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remain unchanged, we find the parameter space for (γ, δ) which admits of three stable limit

cycles. The associated amplitude equation for Eq. (6.14), is given by,

ṙ = rµ
1024

(
−21δr10 + 28γr8 − 40βr6 + 64αr4 − 128r2 + 512

)
. (6.15)

For γ = δ = 0 amplitude equation reduces to that for Kaiser model. The corresponding

parameter space for (α, β) and phase portrait of bi-rhythmicity (having amplitudes rss =

2.63902, 3.96164 and 4.83953) of Kaiser model are shown in Fig. 6.1.
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Figure 6.1: Bi-rhythmic Van der Pol or Kaiser model (Eq. 6.14 ; γ = δ = 0 with µ = 0.1). Subplot (a)
represents the bi-rhythmic parameter space for (α, β) and (b) refer to the corresponding
phase space plot showing the location of the stable limit cycles (black, continuous) along
with an unstable limit cycle (red, dotted) for the parameters values, α = 0.144 and β =
0.005 (magenta dot in subplot a).

To realize tri-rhythmicity in Van der Pol system we search for the specific region of (γ, δ)

for a chosen set of values of (α, β) corresponding to the bi-rhythmic space at (α = 0.144, β =

0.005), respectively. By solving Eq. (6.15) for the five distinct real roots, one obtains the

region as shown in Fig. 6.2(a). As no direct simple method is available for an equation with

degree higher than 3, we take resort to numerical simulation using higher order root finding

algorithm in Mathematica as the amplitude equation is a polynomial in r of degree 11 which

can be reduced to degree 6, where one root is zero and other non-zero roots appear in

conjugate pairs.

Now, for γ and δ from the region in Fig. 6.2(a), we obtain five distinct magnitudes of non-

zero real roots of Eq. (6.15). The number of limit cycles can be obtained from the magnitude

of the radii. The unique zero value as a root provides the location of the fixed point as well

as the stability of the fixed point of the system. For γ = 0.00005862 and δ = 2.13× 10−7, it

gives rss = 0, 2.66673, 3.53498, 8.3682, 10.4793, 12.9421. The stability of the corresponding
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Figure 6.2: Tri-rhythmic Van der Pol model (Eq. 6.14 ; µ = 0.01). Subplot (a) represents the tri-rhythmic
parameter space of (γ, δ) and (b) refer to the corresponding phase space plot of five concen-
tric limit cycles among them three are stable (black, continuous) and remaining two are un-
stable (red, dotted) for the parameter values α = 0.144, β = 0.005, γ = 0.00005862 and δ =
2.13× 10−7 (magenta dots in subplot a and Fig. 6.1a).

cycles can be determined by the signs of the real parts of the eigenvalues appearing in the

respective order as (−, +, −, +, −) for rss = 2.66673, 3.53498, 8.3682, 10.4793, 12.9421. This

implies that the cycles are in the order of stable, unstable, stable, unstable, stable, respectively.

The unique fixed point rss = 0 (i.e., the origin) is unstable as dṙ
dr |rss=0> 0. The phase space plot

of Fig. 6.2(b) corresponds to the stable cycles (black, continuous) along with unstable cycles

(red, doted). One has to set µ is very small[39, 272] as much as possible to get nearly a

circular orbit.

6.4.1.2 Another generalization of Van der Pol system: three stable limit cycles

We now examine the LLS oscillator model to suggest an alternative extension of Van der Pol

model, where the damping part contains ẋ3 instead of ẋ as follows,

ẍ− µ(1− x2 + αx4 − βx6 + γx8 − δx10)ẋ3 + x = 0, 0 < µ� 1; α, β, γ, δ > 0. (6.16)

This corresponds to case-II, N = 10 and M = 3; therefore the system can have atmost
10+3−1

2 = 6 limit cycles. The numerical examination however, reveals that the actual number

is 5. The justification is provided below. The corresponding amplitude equation takes the

form,

ṙ = r3µ
2048

(
−9δr10 + 14γr8 − 24βr6 + 48αr4 − 128r2 + 768

)
. (6.17)
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Now, to have a complete knowledge of the full parameter space for tri-rhythmicity for

(α, β, γ, δ)–at first we have to fix γ = δ = 0, as in the previous case. This is a generically

distinct kind of variant of Kaiser model having three limit cycles. This type of bi-rhythmic

oscillator is not known in the literature. For γ = δ = 0, case-II gives the maximum number

of limit cycles 4, but amplitude equation (6.17) says that it has at most three non-zero roots

of distinct magnitudes and the zero root has multiplicity three. The bi-rhythmic parameter

zone and the phase space plot for γ = δ = 0 are given in Fig. 6.3.
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Figure 6.3: A generalisation of bi-rhythmic Van der Pol oscillator (Eq. 6.16 ; γ = 0 = δ with µ = 0.01).
Subplot (a) represents the bi-rhythmic parameter space for (α, β) and (b) refer to the
corresponding phase space plot showing the location of the stable limit cycles (black,
continuous) along with the unstable limit cycle (red, dotted) for the parameters values,
α = 0.139317 and β = 0.00454603 (magenta dot in subplot a).

Now, for α = 0.139317 and β = 0.00454603, one must have three non-zero values of rss =

3.53297, 4.33345, 5.48006. The zero value of rss has multiplicity 3 which is basically a neutral

fixed point but is unstable in nature. The stability of the cycles is given in an outward

sequence as stable, unstable and stable, respectively.

Now, to find the region of (γ, δ) in 2-D space, we first fix the parameters at α = 0.139317

and β = 0.00454603. Eq. (6.17) is then solved to provide five distinct real roots. The parameter

region for (γ, δ) is given in Fig. 6.4(a). For fixed values of γ = 0.00002402 and δ = 3.058× 10−8–

the distinct roots of rss are 0(of multiplicity 3), 3.75166, 3.80059, 6.63736, 20.9299, 26.6688

and the non-zero values are the radii of the cycles having the stability in outward sequence

as: stable, unstable, stable, unstable, stable, respectively. The respective phase space portrait

is given in Fig. 6.4(b).
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Figure 6.4: Alternate generalisation of tri-rhythmic Van der Pol oscillator (Eq. 6.16 ; µ = 0.0000001). Sub-
plot (a) represents the tri-rhythmic parameter space of (γ, δ) and (b) refer to the cor-
responding phase space plot of five concentric limit cycles among them three are sta-
ble (black, continuous) and two are unstable (red, dotted) for the parameter values
α = 0.139317, β = 0.00454603, γ = 0.00002402 and δ = 3.058 × 10−8 (magenta dots in
subplot a and Fig. 6.3a). The inset in subplot (b) zooms the gap between the first stable
and unstable limit cycles in the outward direction.

6.4.2 Rayleigh family of oscillators

6.4.2.1 Bi-rhythmic Rayleigh: three stable limit cycles

Here we consider an extension for Rayleigh oscillator model as a LLS system. The model can

be written as,

ẍ− µ(1− ẋ2 + αẋ4 − βẋ6 + γẋ8 − δẋ10)ẋ + x = 0, 0 < µ� 1; α, β, γ, δ > 0. (6.18)

Corresponding to case-I, we have N = 1 and M = 11 and accordingly the system can have

at most 11+1−2
2 = 5 limit cycles. The amplitude equation takes the form,

ṙ = rµ
1024

(
−231δr10 + 252γr8 − 280βr6 + 320αr4 − 384r2 + 512

)
. (6.19)

Proceeding as in the previous case we see that for γ = δ = 0 the maximum number of

limit cycles is 3 having the bi-rhythmic parameter region (α, β) as given in Fig. 6.5(a). The

corresponding phase portrait is shown in Fig. 6.5(b) with amplitudes rss = 1.69091, 2.03334

and 2.51274.

For searching the region of (γ, δ) in 2-D space, (α, β) is fixed at (0.285272, 0.0244993). The

parameter space (γ, δ) is shown in Fig. 6.6(a). The phase portrait in Fig. 6.6(b) shows the

tri-rhythmicity for γ = 0.0002544 and δ = 6.62× 10−7. The amplitudes for the tri-rhythmic
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Figure 6.5: Bi-rhythmic Rayleigh oscillator (Eq. 6.18 ; γ = 0 = δ with µ = 0.1). Subplot (a) represents
the bi-rhythmic parameter space for (α, β) and (b) refer to the corresponding phase space
plot showing the location of the stable limit cycles (black, continuous) along with an un-
stable limit cycle (red, dotted) for the parameters values, α = 0.285272 and β = 0.0244993
(magenta dot in subplot a).

Rayleigh oscillator, are , rss = 1.77779, 1.82091, 2.86779, 12.5239 and 15.7377–are in the same

outward sequence i.e. stable, unstable, stable, unstable and stable.
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Figure 6.6: Tri-rhythmic Rayleigh oscillator (Eq. 6.18 ; µ = 0.00001). Subplot (a) represents the tri-
rhythmic parameter space of (γ, δ) and (b) refer the corresponding phase space plot of
five concentric limit cycles among them three are stable (black, continuous) and two
are unstable (red, dotted) for the parameter values α = 0.285272, β = 0.0244993, γ =
0.0002544 and δ = 6.62× 10−7 (magenta dots in subplot a and Fig. 6.5a). The inset in sub-
plot (b) zooms the gap between the first stable and unstable limit cycles in the outward
direction.
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6.4.2.2 Alternative form of extended Rayleigh model: three stable limit cycles

Here we consider another LLS oscillator system as an alternative form of the extended

Rayleigh oscillator model with N = 1 and M = 13. The model can be written as,

ẍ− µ(1− ẋ2 + αẋ4 − βẋ6 + γẋ8 − δẋ10)ẋ3 + x = 0, 0 < µ� 1; α, β, γ, δ > 0. (6.20)

As per case-I, the system has at most 13+1−2
2 = 6 cycles and the corresponding amplitude

equation takes the form,

ṙ = µr3

2048

(
−429δr10 + 462γr8 − 504βr6 + 560αr4 − 640r2 + 768

)
. (6.21)

For γ = δ = 0 we have at most 3 limit cycles having the bi-rhythmic parameter region

for (α, β) as shown in Fig. 6.7(a). The corresponding phase portrait is given in Fig. 6.7(b).

Here, for the above bi-rhythmic Rayleigh oscillator the amplitudes will take the values, rss =

1.5775, 1.90947 and 2.52202.
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Figure 6.7: Alternate generalisation of Rayleigh oscillator for Bi-rhythmicity (Eq. 6.20 ; γ = 0 = δ with
µ = 0.01). Subplot (a) represents the bi-rhythmic parameter space for (α, β) and (b) refer to
the corresponding phase space plot showing the location of the stable limit cycles (black,
continuous) along with an unstable limit cycle (red, dotted) for the parameters values,
α = 0.296930 and β = 0.0264040 (magenta dot in subplot a).

The parameter space of (γ, δ) in 2-D space for a fixed α = 0.296930 and β = 0.0264040, is

shown in Fig. 6.8(a) and Fig. 6.8(b) shows the corresponding tri-rhythmic phase portrait at a

fixed values (γ, δ) i.e., γ = 0.0004334 and δ = 1.815× 10−6. The amplitudes of Eq. (6.21) will

be the non-zero steady states values of rss i.e., 1.66034, 1.70743, 3.0214, 9.27171 and 12.5056,

which are in the same stability sequence as in previous.
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Figure 6.8: Alternate generalisation of Rayleigh oscillator for tri-rhythmicity (Eq. 6.20 ; µ = 0.0000005).
Subplot (a) represents the tri-rhythmic parameter space of (γ, δ) and (b) refer to the
corresponding phase space plot of five concentric limit cycles among them three are
stable (black, continuous) and two are unstable (red, dotted) for the parameter values
α = 0.296930, β = 0.0264040, γ = 0.0004334 and δ = 1.815× 10−6 (magenta dots in sub-
plot a and Fig. 6.7a). The inset in subplot (b) zooms the gap between the first stable and
unstable limit cycles in the outward direction.

By making use of this approach we have demonstrated the parameter spaces for bi-

rhythmicity and tri-rhythmicity for Rayleigh and Van der Pol cases. The structure of the

stable and unstable concentric multiple limit cycles are described in terms of corresponding

radial equations. The scheme also covers the alternate generalizations of bi-rhythmic and

tri-rhythmic Rayleigh and Van der Pol families of oscillators.

For the alternate cases (i.e., Eq. 6.16 and Eq. 6.20), both the families of oscillators it appears

that F(0, 0) = 0 which is a condition for center[97]. However, both of the families have at least

one stable limit cycle which can be checked from the amplitude equation, giving a non-zero

radius. It can be resolved if we consider a small neighbourhood of (0, 0), say, (δ1, δ2) where

F(δ1, δ2)(δ1 ,δ2)→(0,0) < 0.

6.5 bi-rhythmicity in other systems

In the above main chapter we have discussed how a class of mono-rhythmic system ex-

pressed as LLS system can be made bi-rhythmic. LLS system is of a a typical kinetic form,

say, ẋ = y, ẏ = −g(x)− f (x, ẋ)ẋ, but there might have some more general form other than

this standard one. So, a question may arise, once we have a bi-rhythmic system in a LLS

form then what will be its non-trivial kinetic set of equations? We have raised this point in

Appendix C. In Appendix C.1 we have discussed how to generate a kinetic form of a bi-
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rhythmic oscillator starting from a kinetic ordinary differential equation (ODE) by choosing

Schnakenberg model[40] through casting them into a LLS form along with the addition of

higher order nonlinearity (Liénard-type extension). The Rayleigh type extension is also dis-

cussed in Appendix C.1.1. Finally, a bi-rhythmic λ−ω system is discussed in Appendix C.2

through a proper example.

6.6 summary, discussions and conclusions

Based on a general scheme of counting limit cycles of a given LLS equation we have pro-

posed a recipe for systematically designing models of multi-rhythmicity. We note the basic

tenets of the scheme stepwise as follows;

Step-I: Given that the number of desired limit cycles is k, we may partition k into N and

M such that k = ( N+M
2 − 1) for Case-I; k = ( N+M−1

2 ) for Case-II and k = ( N+M−3
2 ) for Case-III

taking care of even and odd nature of N and M as appropriate for Van der Pol or Rayleigh

families of oscillators, M and N being the highest power of velocity ξ̇ and position ξ, respec-

tively for the damping function F(ξ , ξ̇) and force function G(ξ).

Step-II: Once N and M are fixed we need to construct the polynomials for damping functions

taking care of alternative signs and polynomial for the force function.

Step-III: To fix the coefficients of the polynomials we first consider the lowest order poly-

nomial functions that determine the mono or bi-rhythmic model. By choosing a point in the

two-dimensional parameter space for the specific non-zero values of the coefficients for the

models with high multi-rhythmicity are switched on. For example, as in section 6.4.1, we

choose one point from α − β parameter space for bi-rhythmic model and then proceed to

construct γ− δ space (for a fixed α, β) for the model of tri-rhythmicity. The procedure may

be repeated for higher order variants.

Step-IV: A smallness parameter (µ as in Eq. 6.14) can be introduced in the damping term

which can be suitably tuned for numerical realisation of the high order limit cycles.

In Table 6.1 we have summarised several cases of oscillators belonging to Van der Pol and

Rayleigh families of oscillators. In terms of the polynomial form of the damping and forcing

functions of phase space variables the average amplitude and phase equations can be derived

to obtain the maximum possible number of limit cycles of a dynamical system. It is verified

that for a LLS system depending on the values of N and M which are the maximum degree
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of the polynomials for damping and restoring forces, respectively, the number of limit cycles

can be at most N+M−2
2 (even-even or odd-odd sub cases) or N+M−1

2 (even-odd sub case) or
N+M−3

2 (odd-even sub case). The generalized Liénard system can be recovered for M = 1 and

N ∈ Z+ whereas for the generalised Rayleigh oscillator we have, N = 1 and M ∈ Z+. For

polynomial form of damping and restoring force functions we have constructed bi-rhythmic

and tri-rhythmic oscillators of Van der Pol and Rayleigh families. New alternative general-

izations of Van der Pol and Rayleigh families of oscillators are also introduced as models for

bi-rhythmicity and tri-rhythmicity. Our approach shows that it is possible to construct a LLS

system with arbitrary rhythmicity.

Secondly the scheme is used to determine the appropriate range of parameters for real-

izing limit cycle oscillations as shown by the corresponding phase portraits. Our approach

shows that once the parameters space that allows a single limit cycle is determined, one may

choose a suitable point in this space to select only the parameters pertaining to the higher

order terms of the polynomials for a systematic search for parameter space for constructing

the remaining limit cycles. Since the choice of the point as referred to is not unique, it is

imperative that the choice of parameters remains widely open for various generalisation of

a multi-rhythmic system.

As multi-rhythmicity plays an important role in switching transitions between different

dynamical states in a nonlinear system, its control[273] and manipulation[89, 274] would be

useful in many self-induced oscillatory processes[10, 28, 36] in diverse interdisciplinary areas.

The proposed multi-rhythmic oscillators can also be useful in various circuit designs as well

as networks according to the demand of the system upon using different controlling schemes

(e.g., delay-feedback control[56], self-conjugate feedback control[91, 92] and a number of

approaches reviewed by Pisarchik et al.[275]) to convert them into lower rhythmic systems.

Systematic lowering of rhythmicity may also be utilized by suitably reducing the reaction

rates of higher order polymeric reactions, using such schemes of control.
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Table 6.1: Nonlinear damping functions, classification of limit cycles of bi-rhythmic and tri-
rhythmic cases of Van der Pol and Rayleigh families of oscillators (S=Stable, U=Unstable,
NS=Neutrally Stable, FP=Fixed Point).
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7
P E R I O D I C A L LY M O D U L AT E D N O N L I N E A R I T Y I N L I M I T C Y C L E

S Y S T E M S : E F F E C T O F D E L AY A N D C O N T R O L O F

B I - R H Y T H M I C I T Y

7.1 introduction

Recently, the effect of periodically modulating the nonlinearity in a limit cycle system, viz.,

Van der Pol oscillator has been investigated as a parametrically excited nonlinearity in the

Van der Pol oscillator(PENVO) along with the standard phenomenon of resonance, exhibits

the phenomenon of antiresonance that is said to have occurred if there is a decrease in the

amplitude of the limit cycle at a certain frequency of the parametrical drive. Time delay

is known to have significant effect on the attractors of a nonlinear system and can also

brings forth new ones. For example, even in a relatively simple system like the Rössler

oscillator, time delayed feedback control [276] induces a large variety of regimes, like tori and

new chaotic attractors, non-existent in the original system; furthermore, the delay modifies

the periods and the stabilities of the limit cycles in the system depending on the strength

of the feedback and the magnitude of the delay. As another example, we may point out

that the direct delayed optoelectronic feedback can suppress hysteresis and bistability in a

directly modulated semiconductor laser [277]. The co-existence of two stable limit cycles with

different frequencies in the presence of delayed feedback has been discussed in detail [278]

for the Van der Pol oscillator and its variants. Mutlicycle Van der Pol oscillator has also been

investigated from the point of view of control of bi-rhythmicity using some different forms

of time delay [56, 89, 91, 92, 267, 268, 274].

However, to the best of our knowledge, there has been no investigation into the control of

multi-stability in a parametric oscillator whose parameter, determining the strength of the

nonlinear term, is varied. It should be noted that periodic variation of such a parameter is

not inconceivable [233]; in fact, it can result in parametric spatiotemporal instability leading

to interesting time-periodic stationary patterns in reaction-diffusion systems. In view of the

above, it is imperative that an investigation of the PENVO and its relevant extension be
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Figure 7.1: Limit cycles in PENVO with delay have oscillating amplitudes. We time-evolve Eq. (7.1) with
γ = 1.5, K = µ = 0.1, τ = 0.623 for Ω = 2 (black) and 4 (red) to arrive at the corresponding
time-series plots (subplot a), x vs. t, and phase space plots (subplot b), ẋ vs. x.

carried out and the interplay, if any, between the time-delayed feedback and the parametric

forcing be revealed.

To this end, here1, we first discuss in section 7.2 how presence of time delayed feedback

affects the resonance and the antiresonance in the PENVO. Furthermore, we discuss how

the resulting bi-rhythmicity therein is supressed by tuning the strength of the period modu-

lation. Subsequently, in section 7.3, we consider multicycle PENVO—multicycle Van der Pol

oscillator whose nonlinearity is sinusoidally varying—and argue in detail that it is possible

to control bi-rhythmicity in this system as well. Finally, we reiterate the main results of this

chapter in section 7.4.

7.2 penvo with delay

Even a simple harmonic oscillator with its quadratic potential modified so as to have a term

that is time delayed, exhibits non-trivial dynamics. The resulting solutions, including the

oscillatory ones, in the weak nonlinear limit can be iteratively extracted using perturbative

methods based on the concept of Renormalisation group [49, 261]. An extended version of

the delayed simple harmonic oscillator, that possesses limit cycle, has also been analyzed [97]

using the Krylov–Bogolyubov (K-B) method [265, 279]. Motivated by these results, we now

consider the PENVO with a time delay term as follows:

ẍ + µ[1 + γ cos(Ωt)](x2 − 1)ẋ + x− Kx(t− τ) = 0, (7.1)

1 Some portion of this chapter is submitted-Saha et al.(submitted) [arXiv:2007.14883]
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Figure 7.2: Antiresonant responses with oscillating amplitudes in PENVO with delay. This figure panel has
been generated by time-evolving Eq. (7.1) with γ ∈ [0, 2], K = µ = 0.1, τ = 0.623; and
Ω = 2 (black) and 4 (red). The time-series, r vs. t, (subplot a) depicts oscillating limit
cycles in the PENVO with delay and the reason behind the oscillations is best understood
as the corresponding non-circular limit cycle attractors in the p-q plane (subplot b). While
for subplots (a) and (b), γ = 1.5, subplot (c) showcases the variation of the averaged
amplitudes with γ, thus, highlighting the presence of antiresonances ∀γ ∈ [0, 2].

where 0 < K, µ, τ � 1; γ ∈ R; and Ω ∈ R+.

Note that for K = γ = 0, we get back the Van der Pol oscillator that in weak nonlinear

limit shows stable limit cycle oscillations with amplitude 2. For appropriate non-zero values

of γ (K still zero), we arrive at the equation for the PENVO [93] that is known to show

antiresonance (oscillations with amplitude smaller than 2) and resonance (oscillations with

amplitude greater than 2) at Ω = 2 and Ω = 4 respectively. Our specific goal in this section is to

find out what happens to the resonance and the antiresonance states once the time delay is introduced

(i.e., when K, γ 6= 0 and Ω = 2, 4), and to explore the possible existence of bi-rhythmicity and its

control in the system.

To begin with we have extensively searched for numerical solutions of Eq. (7.1) at different

parameter values. In Fig. 7.1, we present two particular oscillatory solutions for the cases

Ω = 2 and Ω = 4. We note that the limit cycles have oscillating amplitudes. In order to

understand the origin of oscillating amplitude and to discover bi-rhythimicity in the course

of our investigation, we employ the K-B method on Eq. (7.1). We, thus, make an ansatz:

x(t) = r(t) cos(t + φ(t)) where we have adopted polar coordinate, (r, φ) = (
√

x2 + ẋ2,−t +

tan−1(−ẋ/x)). r and φ are very slowly varying function of time since we are working under

the assumption that 0 < µ � 1; we set r(t) = r + O(µ) and φ(t) = φ + O(µ). Here, we have

used the definition that average of a function, f (x, ẋ) (say), over a period 2π is conveniently
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Figure 7.3: Strength of periodic modulation of nonlinear damping controls delay-induced bi-rhythmicity. This
figure panel of streamline plots depicts repellers [unstable focus (red dot) and saddle
(orange dot)] and attractors [stable focus (blue dot) and stable limit cycle (around red
dot; not explicitly shown)] in p-q space of the PENVO with delay at γ = 1.5 (subplot a),
2.5 (subplot b), and 3.3 (subplot c); K = µ = 0.1; τ = 0.623; and Ω = 2. The stable foci on
(approximately) principle diagonal of the figures have same

√
p2 + q2-value, and so is the

case with the stable foci on (approximately) anti-diagonal of the figures. Note how with
change in γ-value, the number of attractors changes from one (limit cycle) to four (foci
that have only two distinct

√
p2 + q2-value).

denoted as f (t) = (1/2π)
∫ 2π

0 f (s)ds. Furthermore, Taylor-expanding r(t − τ) as r(t − τ) =

r(t)− τṙ(t) = r(t) + O(µ) (since ṙ(t) ∼ O(µ)), one finally obtains

ṙ = −
r
(
4K sin τ + µ

(
r2 − 4

))
8

+ AΩ(r, φ; γ) + O(µ2),

(7.2a)

φ̇ = −K cos τ

2
+ BΩ(r, φ; γ) + O(µ2), (7.2b)

where, O(µ2) terms can be neglected and AΩ and BΩ denote the γ dependent parts. It is

interesting that these two functions’ denominators blow up at Ω equal to 2 and 4. We, thus,

resort to the L’Hôspitals’ rule to find the functions at Ω = 2, 4:

A2(r, φ; γ) = −1
4

γµr cos
(
2φ
)
, (7.3a)

B2(r, φ; γ) = −1
8

γµ sin
(
2φ
) (

r2 − 2
)

; (7.3b)

A4(r, φ; γ) =
1
16

γr3µ cos
(
4φ
)
, (7.3c)

B4(r, φ; γ) = − 1
16

γr2µ sin
(
4φ
)
. (7.3d)

Here the subscripts specify the value of Ω at which AΩ and BΩ have been determined.

As an illustration, in Fig. 7.2(a), we present r as a function of t for both Ω = 2 and Ω = 4

after fixing γ = 1.5, τ = 0.623, and K = µ = 0.1. The solutions are oscillatory in sharp contrast
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to the case of the weakly nonlinear Van der Pol oscillator for which the plot of r vs. t would

be a horizontal straight line passing through r = 2 at large times. Obviously, it is a little

ambiguous to define the resonance and the antiresonance states in terms of the magnitude

of the oscillations’ amplitude because the amplitude itself is oscillating. Hence for the sake

of consistency, to define the resonance and the antiresonance states, we henceforth use the

average of the oscillating amplitude. Consequently, in Fig. 7.2(c), we plot average of r i.e.

〈r〉t (after removing enough transients) with γ to note that at both Ω = 2 and Ω = 4 the

system shows antiresonance. Note that one of the interesting effects of the delay is to suppress the

uncontrolled growth of oscillations (for Ω = 4 and as γ→ 2) present in the absence of delay.

The oscillations in the amplitudes of the limit cycles is best explained by recasting the

equations for r and φ in (p, q)-plane where (p, q) =
(
r cos φ, r sin φ

)
or consequently, (r, φ) =

(
√

p2 + q2, tan−1(q/p)). Substituting these relations in equations (7.2), one arrive at the fol-

lowing dynamical flow equations:

ṗ|2 = −Kp sin τ

2
+

Kq cos τ

2
− µp3

8
− γµp

4
+

µp
2

+
1
4

γµpq2 − 1
8

µpq2, (7.4a)

q̇|2 = −Kp cos τ

2
− Kq sin τ

2
− 1

4
γµp2q− 1

8
µp2q− µq3

8
+

γµq
4

+
µq
2

; (7.4b)

ṗ|4 = −Kp sin τ

2
+

Kq cos τ

2
+

1
16

γµp3 − µp3

8
+

µp
2
− 3

16
γµpq2 − 1

8
µpq2, (7.5a)

q̇|4 = −Kp cos τ

2
− Kq sin τ

2
− 3

16
γµp2q− 1

8
µp2q +

1
16

γµq3 − µq3

8
+

µq
2

. (7.5b)

Here again subscripts 2 and 4 refer respectively to the cases corresponding to Ω = 2 and

Ω = 4. Fig. 7.2(b) exhibits the limit cycles that are not perfect circles about the origin in

p-q plane. Thus, it is clear that for either of the cases, the slow variation of the limit cycle

amplitude is manifested through the slow variation of the distance of the phase point on the

closed trajectory from the origin in p-q plane.

Now, we ask the question if the system allows for bi-rhythmicity. We realize that a conve-

nient way to search for it is to look for stable fixed points (except the one at the origin) and

stable limit cycles in the corresponding p-q plane. A closer look at Eqs. (7.4) and (7.5) reveals

that (0, 0) is a common fixed point and, additionally, we have seen that they possess limit cy-

cles. Straightforward linear stability analysis about the fixed point for the case Ω = 4 yields(
µ± iKe±iτ) /2 as the eigenvalues that clearly has real negative part and there is no local

bifurcation possible with change in γ. In fact, detailed numerical study suggests that, for the

appropriately fixed parameters and Ω = 4, no changes occur except that the oscillation in

the amplitude of the limit cycle becomes less perceptible with increase in γ. Naturally, one

expects only mono-rhythmicity in the system.
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Figure 7.4: Bi-rhythmic response of PENVO with delay. The time series plot (a) and the phase space plot
(b) for Eq. (7.1) with γ = 3.3, K = µ = 0.1, τ = 0.623, and Ω = 2. The blue and the black
lines correspond to two different initial conditions.

The case of Ω = 2 is, however, very interesting: The linear stability about (0, 0) yields the

eigenvalues (±
√

γ2µ2 − 2K2 cos(2τ)− 2K2 − 2K sin τ + 2µ)/4 and thus the character of the

fixed point can change with the value of γ, e.g., it is quite clear that for small values of

γ (other parameters being appropriately fixed) the origin should be a focus and for larger

values it should be a saddle. The full study of Eq. (7.4) being analytically quite cumbersome,

we present a numerical illustration of how bi-rhythmicity is generated by varying γ.

In this respect, please see Fig. 7.3 where we have depicted the vector plots corresponding

to Eq. (7.4) for γ = 1.5, γ = 2.5 and γ = 3.3. We have fixed Ω = 2, τ = 0.623, and K = µ = 0.1.

Careful study reveals that, as γ is increased, after γ ≈ 1.82 the origin becomes a saddle from

an unstable focus. The saddle however is born along with two stable foci (say, F−1 and F+
1 )

at which the stable manifolds of the saddle terminate; two other stable foci are also born

(say, F−2 and F+
2 ) and the limit cycle, that exists around the origin for γ . 1.82, is annihilated.

One observes that at a given γ, the value of p2 + q2 is same for F−1 and F+
1 , and also for F−2

and F+
2 , meaning that only two (and not four) different limit cycles can be observed in the

PENVO with delay when γ & 1.82. We verify this conclusion by numerically solving Eq. (7.1)

for two different initial conditions but at the same set of parameter values and as shown in

Fig. 7.4, we observe bi-rhythmic oscillations. To conclude what we have shown is that by

changing γ we can induce bi-rhythmicity or conversely, one can say that if the system is

already bi-rhythmic, we can make the system mono-rhythmic by using γ as a control parameter.
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7.3 multicycle penvo

Up to now we have seen how a delay term added in the PENVO modifies the antireso-

nance and the resonance at Ω = 2 and Ω = 4 respectively, and furthermore, gives rise to

bi-rhythmicity that in turn can be controlled by the strength of the periodically modulated

nonlinearity in PENVO. Another natural modification of the Van der Pol oscillator with mul-

tiple limit cycles is a variant of the Van der Pol oscillator—originally proposed [55, 85] to

model enzyme reaction in biochemical system—with a sextic order polynomial as damping

coefficient:

ẍ + µ(−1 + x2 − αx4 + βx6)ẋ + x = 0. (7.6)

Here, 0 < µ � 1 and α, β > 0. We call it Kaiser oscillator. It has three concentric limit cycles

surrounding an unstable focus at the origin: two of them are stable and the unstable one

acts as the boundary separating the basins of attractions of the two stable cycles. However,

whether there are two stable limit cycles (bi-rhythmicity) or only one (mono-rhythmicity)

strictly depends on values of α and β. Under the assumption that µ � 1, straightforward

application of the K-B method helps to demarcate the regions of bi-rhythmicity and mono-

rhythmicity in α− β parameter space (see Fig. D.1 in Appendix D.1). In the context of this

chapter, it is of immediate curiosity to ponder upon the important questions like ‘can one

find resonance and antiresonance in the Kaiser oscillator’, ‘would periodically modulating

the nonlinearity control the inherent bi-rhythmicity in the Kaiser oscillator’, etc.

The addition of the periodic modulation of nonlinearity in the Kaiser oscillator get us the

following equation:

ẍ + µ [1 + γ cos(Ωt)] (−1 + x2 − αx4 + βx6)ẋ + x = 0, (7.7)

where γ > 0. For obvious reasons, henceforth we aptly call this system: multicycle PENVO.

Again, the K-B method yields,

ṙ =
1

128
rµ
(
−5βr6 + 8αr4 − 16r2 + 64

)
+ AΩ(r, φ; γ), (7.8a)

φ̇ = BΩ(r, φ; γ) + O(µ2). (7.8b)
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Figure 7.5: Resonant and antiresonant responses in multicycle PENVO. Presented are time series plots
(subplot a and b) corresponding to both small (solid line) and large (dotted line) cycles
for Ω = 2(black), 4(red), 6(blue) and 8(magenta). Furthermore, subplots (c) and (d) depict
how the averaged amplitudes of the responses change with γ ∈ [0, 2]. It is depicted that
the smaller limit cycle shows resonances for the case Ω = 4, 6 and 8 but antiresonance for
the case Ω = 2; the larger limit cycle admits resonance for Ω = 8 but antiresonance for the
case Ω = 2, 4 and 6. The values of the parameters used to numerically solve Eq. (7.8) for
the purpose of the figure are α = 0.144, β = 0.005, µ = 0.1 and γ = 1.5 (in subplot a and
b).
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Here the symbols are in their usual meaning as detailed in section 7.2. The subscripts specify

the value of Ω at which AΩ and BΩ have to be determined; the functions have singularities

at Ω = 2, 4, 6 and 8, and their limiting values at these Ω-values are respectively,

A2 = − 1
64

γrµ cos
(
2φ
) (

βr6 − αr4 + 16
)

, (7.9a)

B2 = − 1
64

γµ sin
(
φ
)

cos
(
φ
) (

7βr6 − 10αr4 + 16r2 − 32
)

;

(7.9b)

A4 =
1
64

γr3µ cos
(
4φ
) (

βr4 − 2αr2 + 4
)

, (7.9c)

B4 = − 1
128

γr2µ sin
(
4φ
) (

7βr4 − 8αr2 + 8
)

; (7.9d)

A6 = − 1
64

γr5µ cos
(
6φ
) (

α− βr2) , (7.9e)

B6 =
1

128
γr4µ sin

(
6φ
) (

2α− 3βr2) ; (7.9f)

A8 =
1

256
βγr7µ cos

(
8φ
)
, (7.9g)

B8 = − 1
256

βγr6µ sin
(
8φ
)
. (7.9h)

As before, we go on to p-q plane to recast set of equations (7.8) for all four Ω-values

in terms of p and q variables (see Appendix D.2) in order to understand the dynamics

conveniently. For all the four values of Ω, the origin—p, q=(0,0)—is a fixed point that on

doing linear stability analysis, turns out to be unstable for all values of γ. Since now the

corresponding equations of motion are much more cumbersome to handle analytically, we

resort to a numerical investigation of the systems. First however we need to pick appropriate

value of α and β. We choose α = 0.144 and β = 0.005 that would allow the Kaiser oscillator

(multicycle PENVO with γ = 0) to exhibit bi-rhythmicity (see Appendix D.1); the amplitudes

of the limit cycles that are concentric circles about (x, ẋ) = (0, 0) in the limit µ → 0 are

approximately 2.64 and 4.84 respectively. In what follows, we work with µ = 0.1.

We now turn on the periodic modulation of the nonlinear term, i.e., we work with the

multicycle PENVO with non-zero γ. We scan the system for various values of γ and present

the results for γ up to 2 in Fig. 7.5. For illustrative purpose, consider γ = 1.5. We note

that the amplitude of the smaller limit cycle of the Kaiser oscillator increases for the case

Ω = 4, 6 and 8 (resonances) but decreases for the case Ω = 2 (antiresonance). Similarly, while

the amplitude of the larger limit cycle of the Kaiser oscillator increases for the case Ω = 8

(resonance), but it decreases for the case Ω = 2, 4 and 6 (antiresonances). As an aside, for the

case Ω = 6, we also note that the amplitudes of both the cycles themselves oscillate and the
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Figure 7.6: Strength of periodic modulation of nonlinear damping controls bi-rhythmicity in multicycle
PENVO. Subplot (a) presents the observation that the average amplitudes of the periodic
responses—the smaller limit cycle (solid blue line) and the larger limit cycle (dotted blue
line)—merge for an intermediate range of γ between γc1 ≈ 0.138 to γc2 ≈ 1.935 resulting
in mono-rhythmicity. Streamplots (b)-(d) depict repellers [unstable node (black dot) , un-
stable focus (red dot) and saddle (orange dot)] and attractors [stable node (green dot) and
stable limit cycle (around each red dot; not explicitly shown)] in p-q space of the multicy-
cle PENVO at γ = 0.1, 1.5, and 1.95, respectively. Other parameter values have been fixed
at α = 0.144, β = 0.005, µ = 0.1 and Ω = 6. In subplot (b), there are two sets of stable
foci with two distinct values of

√
p2 + q2 (hence bi-rhythmicity), while in subplot (c) only

attractor (and hence mono-rhythmicity) is a limit cycle—a circle that passes through all
the unstable foci with same

√
p2 + q2-values and centred at origin. In subplot (c), in addi-

tion to this limit cycle, another set of stable foci appear with same
√

p2 + q2-value (hence
bi-rhythmicity).
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response corresponding to the outer limit cycle changes from antiresonance to resonance as

γ increases (see Fig. 7.5d).

More interesting, however, is the fact that the resonance and the antiresonance, mani-

fested as limit cycles with oscillating amplitudes, for Ω = 6 merge—as implicitly shown

in Fig. 7.6(a)—for a range of γ-values: γ ∈ (γc1 , γc2) ≈ (0.138, 1.935). This means that

γ is yet again acting as a control parameter in bringing about mono-rhythmicity by suppressing

the bi-rhythmicity. To understand the phase dynamics of control of the aforementioned bi-

rhythmicity, we consider the system (7.8) in (p, q) plane at three representative values of γ,

viz., γ = 0.1 (Fig. 7.6b), γ = 1.5 (Fig. 7.6c), and γ = 1.95 (Fig. 7.6d). For γ = 0.1 < γc1 , a case

of bi-rhythmicity, there are twelve stable nodes—the only attractors in the phase space—that

can be classified into two groups such that one group of nodes has
√

p2 + q2 ≈ 2.70 and

the other group has
√

p2 + q2 ≈ 4.67. This corresponds to the fact that there are two distinct

limit-cycles in the x-ẋ plane, and their radii are 2.70 and 4.67; in other words, the system is

bi-rhythmic. In the mono-rhythmic case of γ = 1.5 ∈ (γc1 , γc2), we note that the attractors

now are twelve limit cycles whose centers (unstable focus) lie on a circle of radius 4.38 (ap-

proximately). Thus, the system has now become mono-rhythmic and the limit cycle in the

x-ẋ plane has periodically oscillating amplitude. The bifurcation leading to the creation of

the twelve symmetrically placed limit cycles takes place at γ = γc1 when the stable nodes and

the unstable saddles (present at γ < γc1) merge appropriately to give rise to the limit cycles

(seen at γ > γc1). Finally, For γ = 1.95 > γc2 , the system showcases bi-rhythmic behaviour

yet again: the six symmetrically placed asymptotically stable nodes in the corresponding p-q

plane have identical values for
√

p2 + q2, viz., 8.12 that corresponds to the amplitude of the

limit cycle of the multicycle PENVO.

We note that the bi-rhythmicity present at other resonance and antiresonance conditions,

i.e., for Ω = 2, 4, and 8, could not be controlled to mono-rhythmicity by the variation in γ.

However, recalling that in section 7.2 the combination of γ and delay could effect control of

bi-rhythmicity, one is tempted to add delay term, viz., ‘−K(t − τ)’ in the left hand side of

Eq. (7.7) with a hope to effect control of bi-rhythmicity for Ω = 2, 4, and 8. The introduction

on such a delay term in the Kaiser oscillator shifts the region of bi-rhythmicity in the α-β

plane (see Appendix D.1). In the simultaneous presence of non-zero γ and K, the multicycle

PENVO’s response at Ω = 2, 4, 6, and 8 can be analyzed using the K-B method just as has

been done in detail for Eq. (7.1) and Eq. (7.7). We omit the repetitive details and rather

present the summary of the analyzes in Fig. 7.7(a-b). We note that the delay does indeed

suppress bi-rhythmicity; and interestingly in the case of Ω = 8, γ can be seen to be a control

parameter even in the presence of delay.
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Figure 7.7: Controlling bi-rhythmicity via delay in multicycle PENVO. Subplots (a) and (b) exhibit how the
averaged amplitudes change with γ ∈ [0, 2] corresponding to both small (solid line) and
large (dotted line) cycles for Ω = 2 (black), 4 (red), 6 (blue) and 8 (magenta). The values
of the relevant parameters used in the figure are α = 0.144, β = 0.005, µ = 0.1 and τ = 0.2.
We note that the responses are mostly mono-rhythmic.

7.4 conclusion

How to control bi-rhythmicity in an oscillator is an interesting question. In this chapter we

have illustrated that the bi-rhythmicity seen in the delayed Van der Pol oscillator and the

Van der Pol oscillator modified to have higher order nonlinear damping (the Kaiser oscilla-

tor) can be suppressed if the nonlinear terms of the oscillators are periodically modulated.

This periodic modulation of the nonlinear damping also brings about resonance and antires-

onance responses in the aforementioned oscillators. In order to characterize the responses,

we have presented perturbative calculations using the K-B method and supplemented them

with ample numerical solutions for the systems of ordinary differential equations under con-

sideration. We have also discussed in detail how to understand the bifurcations leading to

mono-rhythmicity from bi-rhythmicity (and vice versa) from the relevant phase space trajec-

tories obtained via the perturbative technique.

We recall that the introduction of delay is one of the popularly known method of con-

trolling bi-rhythmicity. However, as we have seen in section 7.2, delay can introduce bi-

rhythmicity as well. It is interesting to realize in such cases periodically modifying the

nonlinear terms can change the bi-rhythmic behaviour to mono-rhythmic. A comparison

of responses due to delay and parametric excitation in a limit cycle system provides an extra

tool-kit for controlling bi-rhythmicity when one alone may not be fruitful. We may point

out that the delay term we have used in this chapter is completely position dependent as
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opposed to the more commonly investigated velocity dependent delay terms [56, 91, 92] in

the literature.

We strongly believe that the proposed idea of controlling multi-rhythmicity by invoking

periodic modulation of nonlinear terms could be useful in plethora of limit cycle systems.

However, we do not believe that building a general universal mechanism behind this phe-

nomenon can be proposed easily; each system has to be analyzed on a case-by-case basis.
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A
λ − ω F O R M O F VA N D E R P O L — D U F F I N G O S C I L L AT O R

a.1 van der pol—duffing oscillator in λ − ω form

A two-dimensional kinetic set of equations can be cast into a Liénard–Levinson–Smith (LLS)

form if there exists any linear transformation and one can apply the reverse of it to get

back the original set of equations. A question may arise, is, for a given LLS system— ẍ +

f (x , ẋ ) ẋ + g(x ), what will be its other kinetic form called λ − ω version in addition to the

trivial one: ẋ = y, ẏ = − f (x , ẋ ) ẋ − g(x )?

To answer this question we explore a general two-dimensional oscillator model with a

λ − ω version having the following kinetic form:

dx
dt

= λ(r )x − ω (r )y,

dy
dt

= ω (r )x + λ(r )y ; r =
√

x2 + y2 . (A.1)

The above system is well known for the existence of Hopf bifurcation and limit cycle attractor

with amplitude r. If any transformation is introduced to change the coordinates from carte-

sian to polar ((x , y) → (r, φ)) s.t. (x , y) = (r cos φ , r sin φ) with (r, φ) =
(√

x2 + y2 , t an−1 y
x

)
then one can easily get

dr
dt

= rλ(r ) ,

dφ

dt
= ω (r ) . (A.2)

The non-zero root(s), say, r = R, of the amplitude equation confirms the existence of limit

cycle(s). The phase solution becomes then φ = φ0 + ω (R)t of frequency ω (R).

Now, to answer the question through an example, we consider the Van der Pol–Duffing

system,

ẍ + ε(x2 − 1) ẋ + x − εx3 = 0. (A.3)
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With the amplitude and phase equation using Krylov–Bogolyubov averaging we have,

ṙ =
ε

2

(
r − r3

4

)
,

φ̇ = − 3 ε

8
r3 . (A.4)

One can segregate the above into the form as,

ṙ = r
ε

8
(

4 − r2) = rλ(r ); λ(r ) =
ε

8
(

4 − r2) ,

φ̇ = ω (r ); ω (r ) = − 3 ε

8
r3 . (A.5)

Now, if we consider a two-dimensional kinetic λ − ω system then it looks like,

dx
dt

=
ε

8
(

4 − r2) x −
(
− 3 ε

8
r3
)

y,

dy
dt

=
(
− 3 ε

8
r3
)

x +
ε

8
(

4 − r2) y ; r =
√

x2 + y2 . (A.6)

Simulation of Eq. (A.6) agrees with Eq. (A.3) has a limit cycle of radius ≈ 2(like Van der Pol).

There is a structural difference between them; the cycle of system (A.6) is circular whereas

the structure of the cycle of system (A.3) is not exactly circular. As a conclusion one can say

that weak nonlinearity of the system can provide better agreement as orbits of such weakly

LLS systems (Eq. A.3) shows more circular in nature (closer to harmonic oscillator solution).

Conversely, if we have a λ − ω type kinetic form then we can construct a LLS form of

it even if there does not exist any linear transformation in the route of casting into LLS

system. To explain this we can have a hypothesis: for a LLS system, if there exists a limit

cycle attractor (repeller) then we have shown that the amplitude equation contains the parts

which are in the damping force function (say, f (x , ẋ )) and the phase equation contains the

parts that are in the restoring force function (say, g(x )) iff f (x , ẋ ) = f1 (x2 , ẋ2 ). So, keeping

this in mind, if we have the λ − ω form (A.1) having the amplitude and phase equations

(A.2) then without loss of generality we can assume the LLS form of it as

ẍ + λ(r ) ẋ + x + ω (r ) = 0. (A.7)
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B
L O T K A - V O LT E R R A S Y S T E M : L I É N A R D – L E V I N S O N – S M I T H ( L L S )

F O R M

To obtain the LLS form of Lotka-Volterra System[10, 28, 36],

ẋ (t) = αx − βxy,

ẏ(t) = −γy + δxy, (B.1)

let us set z = δx + βy then ż = αδx − βγy = u =⇒ x = ż+γz
(α+γ)δ and y = − ż+αz

(α+γ)β . After taking

t derivative upon ż one can have,

z̈ = (α − γ) ż + αγz + ż2

α+γ + γ−α
α+γ z ż − αγ

α+γ z2 . (B.2)

The fixed point (0, 0) gives a saddle solution which is not of any interest in the present

context. Choosing the remaining non-zero fixed point for further investigations and after

taking perturbation z = ξ + z s around the fixed point z s = α + γ = δx s + βy s 6= 0, one can

get the LLS form with F (ξ , ξ̇ ) = a1 ξ + a2 ξ̇ with a1 = α−γ
α+γ and a2 = − 1

α+γ . It is to be noted

that G (ξ ) contains nonlinearity with G (ξ ) = ω2 ξ + a3 ξ 2 where ω =
√

αγ = I m(λ)(+ve

sense) and a3 = αγ
α+γ . After introducing a small parameter ε1 in the constants, a i , b i such

that a i = ε1 b i , i = 1, 2, 3 the above equation reduces to

ξ̈ + ε1 (b1 ξ + b2 ξ̇ ) ξ̇ + ω2 ξ + ε1 b3 ξ 2 = 0, (B.3)

and after rescaling time, t by τ with τ = ω t (s.t. ξ (t) changes to Z (τ )), the above equation

takes the form, Z̈ (τ ) + εh(Z (τ ) , Ż (τ )) + Z (τ ) = 0 with h = (k1 Z + k2 Ż ) Ż + k3 Z2 where

k1 = ωb1, k2 = ω2 b2, k3 = b3, and ε = ε1
ω2 . We have considered 0 < ε � 1, which means

0 < ε1 � ω2 = αγ ≤ 1 =⇒ α ≤ 1
γ , since α , γ > 0.

150



C
G E N E R AT I O N O F B I - R H Y T H M I C I T Y I N O T H E R S Y S T E M S A N D

λ − ω V E R S I O N O F I T

c.1 bi-rhythmicity in schnakenberg model

The governing kinetic equations for the original Schnakenberg model[40] are,

ẋ = a + x 2 y − x ,

ẏ = b − x 2 y . (C.1)

Our aim is to remodel the above mono-rhythmic system into a bi-rhythmic one by cast-

ing into a Liénard–Levinson–Smith (LLS) form by adding extra nonlinearity. To transform

the above system of equations into a LLS form, defining a suitable linear transformation

as z = x + y − ( p + q ) , s.t. ż = u holds, where u = a + b − x . The inverse trans-

formations provides x = a + b − u and y = z + u − ( a + b ) + ( p + q ) . The point

( p , q ) =
(

a + b , b
( a + b ) 2

)
is the fixed point of (C.1). Derivative w.r.t. time again provides

the generalised Rayleigh (or LLS form), as,

z̈ + { f 0 0 − 2 ( a + b ) z + ( p + q − 3 ( a + b ) + z ) ż + ż 2 } ż + ω 2 z = 0 ;

ω = ( a + b ) , f 0 0 = a 2 + 2 a
(

1
a + b

+ b
)

+ b 2 − 1 (C.2)

In some recent developments[40, 44, 87] in this direction of Liénard approach, we have

shown that for a locally stable limit cycle, the condition f 0 0 < 0 must be satisfied. This

condition helps to find the parameter region for mono-rhythmicity and for a fixed value

of ( a , b ) it is able to provide the mono-rhythmicity in the LLS system (C.2) as well as

original kinetic system (C.1). The parameter space for the mono-rhythmicity is given in

Fig. C.1(a) with the shaded area for mono-rhythmicity and for a specific set of values of

( a , b ) = ( 0 . 0 0 1 4 2 2 , 0 . 9 8 0 6 ), the corresponding phase space for the LLS system (C.2) is

given in Fig. C.1(b). The original phase space for Schnakenberg mono-rhythmic model (C.1)

is given in Fig. C.2, where continuous and dotted curves are the plots for system (C.1) and
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its projection (fixed point shifting) to the origin, respectively. The fixed point shifting is taken

to get an idea about the radius of the limit cycle that can be estimated by the axes cuts[259].

For better estimation one needs to go through perturbation theory with second order correc-

tion[259]. So, if we shift the system (C.1) from a non-zero fixed point (xs, ys) = (p, q) to the

-0.3 0 0.3 0.6
z

-0.6

-0.3

0

0.3

z
.

(b)

Figure C.1: Mono-rhythmic Schnakenberg model: The plot (a) is the parameter regime of Eq. (C.1) for a
stable limit cycle and (b) phase space of the LLS form (C.2) of the Schnakenberg model
(C.1) representing a stable limit cycle for the parameter values (a, b) = (0.001422, 0.9806).

the origin by the transformations x = x + p and y = y + q then the corresponding kinetic flow

equations take the form,

ẋ =
x(b(b+x)−a2)

(a+b)2 + y(a + b + x)2,

ẏ = −y(a + b + x)2 − bx(2(a+b)+x)
(a+b)2 . (C.3)

with the cycle (see Fig. C.2) cuts the x-axis at ≈ 0.36 where as the y-axis at ≈ 0.48.

As we have seen in the chapter 6, that the bi-rhythmicity can be constructed with the

addition of higher order terms in the polynomial to the LLS system. To fulfil the aim towards

the direction of the construction of bi-rhythmicity for the Schnakenberg model we have

to add higher order nonlinear polynomial function of z, say, −αz4 + βz6, (or −αż4 + βż6,

discussed later in section C.1.1) to the damping force function which helps us to have higher

order amplitude equation and hence bi-rhythmicity. So, the generalised Rayleigh oscillator

(C.2) can be rewritten as,

z̈ + { f00 − 2(a + b)z + (p + q− 3(a + b) + z)ż + ż2 − αz4 + βz6}ż + ω2z = 0. (C.4)
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Figure C.2: Mono-rhythmic Schnakenberg model: Phase space plots of mono-rhythmic Schnakenberg
model in (x, y) coordinate system where the thin curve is for the original kinetic equa-
tions (C.1) with a non-zero fixed point and the bold one is the projection of the system
to the origin can be explained by the set of kinetic equations (C.3). Here, the parameter
values are a = 0.001422 and b = 0.9806.

To implement perturbative analysis in the above LLS system (C.4) to have amplitude equa-

tion as well as the bi-rhythmic parameter zone, let us rescale the original time (say, t) by

ωt → τ. Then the dependent variable of system (C.4) is transformed into ξ(τ) from z(t) and

system (C.4) can be written as,

ξ̈ + ε

[
1
σ
{ f00 − 2(a + b)ξ + (p + q− 3(a + b) + ξ)ωξ̇ + ω2ξ̇2 − αξ4 + βξ6}

]
ξ̇

+ξ = 0, (C.5)

where, ε = σ
ω and σ = | f00|, and restricted the system by 0 < ε � 1 to apply perturbative

analysis through the system parameters (a, b). Now the system is ready to perform any

perturbative analysis.

Here, we apply Renormalisation Group (RG) method to have amplitude and phase equa-

tion. So, by introducing a perturbative solution of ξ as, ξ = ξ0 + ε ξ1 + O(ε2), system (C.5)

yields,

ε0 : ξ̈0 + ξ0 = 0, (C.6)

ε1 : ξ̈1 + ξ1 = − 1
σ
{ξ̇0

(
−2(a + b)ξ0 + f00 − αξ0

4 + βξ0
6
)

+ωξ̇0
2
(−3a− 3b + p + q + ξ0) + ω2ξ̇0

3}. (C.7)
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Setting initial conditions, ξ(τ = 0) = H and ξ̇(τ = 0) = 0 provides ξ0(0) = H and ξi(0) =
0, ∀i > 0 along with ξ̇i(0) = 0, ∀i ≥ 0. By applying these initial conditions one finds a
harmonic oscillator solution ξ0(τ) = H cos(τ + θ0) having amplitude H and phase θ0 for the
zeroth order correction. The zeroth order correction admits the solution of ξ1, the first order
solution (the complete method is given in the overview). Finally, one finds the approximate
analytical solution of ξ = ξ0 + εξ1 (upto first order correction), is,

ξ = H cos(τ + θ0)

+ε

[
5β sin (τ − θ0) H7

256σ
+

5β sin (τ + θ0) H7

256σ
+

9β sin (τ + 3θ0) H7

256σ
+

5β sin (τ + 5θ0) H7

512σ
+

β sin (τ + 7θ0) H7

768σ
+

9β sin (τ − 3θ0) H7

512σ

+
5β sin (τ − 5θ0) H7

768σ
+

β sin (τ − 7θ0) H7

1024σ
− 5βτ cos (τ + θ0) H7

128σ
− 9β sin (3 (τ + θ0)) H7

512σ
− 5β sin (5 (τ + θ0)) H7

1536σ

− β sin (7 (τ + θ0)) H7

3072σ
+

ατ cos (τ + θ0) H5

16σ
+

3α sin (3 (τ + θ0)) H5

128σ
+

α sin (5 (τ + θ0)) H5

384σ
− α sin (τ − θ0) H5

32σ
− α sin (τ + θ0) H5

32σ

− 3α sin (τ + 3θ0) H5

64σ
− α sin (τ + 5θ0) H5

128σ
− 3α sin (τ − 3θ0) H5

128σ
− α sin (τ − 5θ0) H5

192σ
+

ω cos (τ − θ0) H3

16σ
+

ω cos (τ + 3θ0) H3

16σ

+
3ω2 sin (τ − θ0) H3

16σ
+

3ω2 sin (τ + θ0) H3

16σ
+

ω2 sin (3 (τ + θ0)) H3

32σ
− 3τω2 cos (τ + θ0) H3

8σ
− τω sin (τ + θ0) H3

8σ

− ω cos (τ + θ0) H3

16σ
− ω2 sin (τ + 3θ0) H3

16σ
− ω cos (3 (τ + θ0)) H3

32σ
− ω cos (τ − 3θ0) H3

32σ
− ω2 sin (τ − 3θ0) H3

32σ
+

3aωH2

2σ

+
3bωH2

2σ
+

pω cos(τ)H2

2σ
+

qω cos(τ)H2

2σ
+

aω cos (2 (τ + θ0)) H2

2σ
+

bω cos (2 (τ + θ0)) H2

2σ
+

pω cos (τ + 2θ0) H2

4σ

+
qω cos (τ + 2θ0) H2

4σ
+

aω cos (τ − 2θ0) H2

4σ
+

bω cos (τ − 2θ0) H2

4σ
+

a sin (2 (τ + θ0)) H2

3σ
+

b sin (2 (τ + θ0)) H2

3σ

− pωH2

2σ
− qωH2

2σ
− 3aω cos(τ)H2

2σ
− 3bω cos(τ)H2

2σ
− a sin (τ + 2θ0) H2

2σ
− b sin (τ + 2θ0) H2

2σ
− 3aω cos (τ + 2θ0) H2

4σ

− 3bω cos (τ + 2θ0) H2

4σ
− pω cos (2 (τ + θ0)) H2

6σ
− qω cos (2 (τ + θ0)) H2

6σ
− a sin (τ − 2θ0) H2

6σ
− b sin (τ − 2θ0) H2

6σ

− pω cos (τ − 2θ0) H2

12σ
− qω cos (τ − 2θ0) H2

12σ
+

f00 sin (τ − θ0) H
4σ

+
f00 sin (τ + θ0) H

4σ
− f00τ cos (τ + θ0) H

2σ

]

As we are applying RG method which is predominantly a multi-scale perturbative method

where the direct time interval (τ − 0) can have to split into (τ − s) + (s − 0) to observe the

slow time variation (0 < s� τ) of amplitudes and phases. Further, to absorb the divergence

in the amplitude and phase solution, they have to modify from (H, θ0) to (H(s), θ(s)) with

the transformations H(s) = H
W1(s,0) and θ(s) = θ0 −W2(s, 0), where W1(s, 0) = 1 + ∑∞

1 εn pn and

W2(s, 0) = 0 + ∑∞
1 εnqn. The terms including O(ε2) can be neglected due to first order analysis

and one finds (W1, W2) = (1 + εp1, εq1). So, after setting the above considerations in the

solution ξ and removing the secular terms we get,

154



ξ = H(s) cos(τ + θ(s))

+ ε

[
5β sin (τ − θ(s)) H(s)7

256σ
+

5β sin (τ + θ(s)) H(s)7

256σ
+

9β sin (τ + 3θ(s)) H(s)7

256σ
+

5β sin (τ + 5θ(s)) H(s)7

512σ

+
β sin (τ + 7θ(s)) H(s)7

768σ
+

9β sin (τ − 3θ(s)) H(s)7

512σ
+

5β sin (τ − 5θ(s)) H(s)7

768σ
+

β sin (τ − 7θ(s)) H(s)7

1024σ

− 5βτ cos (τ + θ(s)) H(s)7

128σ
− 9β sin (3 (τ + θ(s))) H(s)7

512σ
− 5β sin (5 (τ + θ(s))) H(s)7

1536σ
− β sin (7 (τ + θ(s))) H(s)7

3072σ

+
ατ cos (τ + θ(s)) H(s)5

16σ
+

3α sin (3 (τ + θ(s))) H(s)5

128σ
+

α sin (5 (τ + θ(s))) H(s)5

384σ
− α sin (τ − θ(s)) H(s)5

32σ
− α sin (τ + θ(s)) H(s)5

32σ

− 3α sin (τ + 3θ(s)) H(s)5

64σ
− α sin (τ + 5θ(s)) H(s)5

128σ
− 3α sin (τ − 3θ(s)) H(s)5

128σ
− α sin (τ − 5θ(s)) H(s)5

192σ
+

ω cos (τ − θ(s)) H(s)3

16σ

+
ω cos (τ + 3θ(s)) H(s)3

16σ
+

3ω2 sin (τ − θ(s)) H(s)3

16σ
+

3ω2 sin (τ + θ(s)) H(s)3

16σ
+

ω2 sin (3 (τ + θ(s))) H(s)3

32σ

− 3τω2 cos (τ + θ(s)) H(s)3

8σ
− τω sin (τ + θ(s)) H(s)3

8σ
− ω cos (τ + θ(s)) H(s)3

16σ
− ω2 sin (τ + 3θ(s)) H(s)3

16σ

− ω cos (3 (τ + θ(s))) H(s)3

32σ
− ω cos (τ − 3θ(s)) H(s)3

32σ
− ω2 sin (τ − 3θ(s)) H(s)3

32σ
+

3aωH(s)2

2σ
+

3bωH(s)2

2σ
+

pω cos(τ)H(s)2

2σ

+
qω cos(τ)H(s)2

2σ
+

aω cos (2 (τ + θ(s))) H(s)2

2σ
+

bω cos (2 (τ + θ(s))) H(s)2

2σ
+

pω cos (τ + 2θ(s)) H(s)2

4σ

+
qω cos (τ + 2θ(s)) H(s)2

4σ
+

aω cos (τ − 2θ(s)) H(s)2

4σ
+

bω cos (τ − 2θ(s)) H(s)2

4σ
+

a sin (2 (τ + θ(s))) H(s)2

3σ

+
b sin (2 (τ + θ(s))) H(s)2

3σ
− pωH(s)2

2σ
− qωH(s)2

2σ
− 3aω cos(τ)H(s)2

2σ
− 3bω cos(τ)H(s)2

2σ
− a sin (τ + 2θ(s)) H(s)2

2σ

− b sin (τ + 2θ(s)) H(s)2

2σ
− 3aω cos (τ + 2θ(s)) H(s)2

4σ
− 3bω cos (τ + 2θ(s)) H(s)2

4σ
− pω cos (2 (τ + θ(s))) H(s)2

6σ

− qω cos (2 (τ + θ(s))) H(s)2

6σ
− a sin (τ − 2θ(s)) H(s)2

6σ
− b sin (τ − 2θ(s)) H(s)2

6σ
− pω cos (τ − 2θ(s)) H(s)2

12σ

− qω cos (τ − 2θ(s)) H(s)2

12σ
+

f00 sin (τ − θ(s)) H(s)
4σ

+
f00 sin (τ + θ(s)) H(s)

4σ
− f00τ cos (τ + θ(s)) H(s)

2σ

]
(C.8)

According to the RG scheme, the final solution based on the combination of slow-fast time

variable cannot be dependent upon the arbitrary time scale s i.e.
(

∂ξ
∂s

)
τ

= 0 which leads to

dH(s)
ds

= − ε

128σ
H
(

64 f00 + 48H2ω2 − 8αH4 + 5βH6
)

+ O(ε2) and

dθ(s)
ds

=
εω

8σ
H2 + O(ε2), (C.9)

where the notations are their usual meanings. The above amplitude equation can show the

mono-rhythmic behaviour for α = β = 0 for a fixed value of (a, b), say, (0.001422, 0.9806)

(from the parameter region Fig. C.1a) along with an approximate amplitude of LLS system

(C.2) as well as the original Schnakenberg model (C.1). The respective plots are shown in

Fig. C.1(b) and Fig. C.2, respectively, where the amplitude is ≈ 0.212748 which is more

accurately reflected in the Liénard zone than original kinetic phase plot.

Now, to get bi-rhythmicity, the bi-rhythmic parameter region of (α, β) must have to find

out by keeping unchanged parameter values of (a, b) (which are taken from mono-rhythmic

parameter zone). In this consideration the amplitude equation provides the parameter space

for (α, β) which is shown in Fig. C.3(a). Then the values of (α, β), say, (9.89762, 6.93655) from

the obtained region gives the amplitudes of the bi-rhythmic oscillation where the amplitudes

for the oscillation are, ≈ 0.222115, 0.982666 and 1.12607 which are of stable, unstable and
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stable, respectively. But the bi-rhythmicity is not reflecting in the phase plane if we solve

Eq. (C.4).

Here, one problem may arise owing to the higher order nonlinearity in the the system i.e.

Eq. (C.4). In the chapter 6, we have already shown that, to have more and more rhythmicity

in a LLS system that can be captured in the phase space, the system must contain higher

order polynomials along with a nonlinearity-tuning parameter which has to be weaker than

a mono-rhythmic oscillator. In the analyzed system we don’t have any artificial nonlinearity

controlling parameter. So, to capture the claimed bi-rhythmic situation in the phase plane,

introducing a nonlinearity-control parameter (say, µ) through the multiplicative adjustment

to damping force function. So, to capture the real scenario, reconstructing the LLS system

from (C.5), as,

z̈ + µ{ f00 − 2(a + b)z + (p + q− 3(a + b) + z)ż + ż2 − αz4 + βz6}ż + ω2z = 0, (C.10)

and after rescaling we have,

ξ̈ + µε

[
1
σ
{ f00 − 2(a + b)ξ + (p + q− 3(a + b) + ξ)ωξ̇ + ω2ξ̇2 − αξ4 + βξ6}

]
ξ̇ + ξ = 0. (C.11)

Doing similar perturbative analysis we have the following amplitude and phase equations:

dH(s)
ds

= − µε

128σ
H
(

64 f00 + 48H2ω2 − 8αH4 + 5βH6
)

+ O(µ2),

dθ(s)
ds

=
µεω

8σ
H2 + O(µ2). (C.12)

The above equations are almost similar to Eq. (C.9) other than an extra multiplicative nonlinearity-

control parameter µ and the magnitudes of the amplitudes do not get affected by it, and we

get almost the same result as in above. The corresponding phase space plot of Eq. (C.10) is

given in Fig.C.3(b) for a particular set of parameters, say, α = 9.89762 and β = 6.93655. The

parameter µ is tuned at 0.1 and for the smaller value of it provides orbits more circular in

the phase plane. So, bi-rhythmicity of Eq. (C.4) does not reflect in the phase space until an

extra parameter is added in the system.

As we already have the linear transformations which are the path to the construction

of LLS system (C.4) from the kinetic flow equations (C.1), so the reverse transformations

must help us to get back to the set of autonomous kinetic equations (C.15) from the LLS

156



0 15 30 45
α

0

60

120

180

β

(a)

-2 -1 0 1 2
z

-2

-1

0

1

2

z
.

(b)

Figure C.3: Bi-rhythmic Schnakenberg model: (a) Parameter region for (α, β) to have bi-rhythmicity for
the LLS form of the extended Schnakenberg model (C.4) and (b) shows the corresponding
bi-rhythmic phase space. Here, the parameter values are a = 0.001422, b = 0.9806, α =
9.89762, β = 6.93655 and µ = 0.1.

system (C.10). The system characteristics remain invariant in both the situations as linear

transformations are applied here. Then the reverse transformations provides:

x = a + b− u

=⇒ ẋ = −u̇ = −u̇|(x,y)= −z̈|{z=x+y−(p+q), u=a+b−x} (C.13)

y = z + u− (a + b) + (p + q)

=⇒ ẏ = ż + u̇ = a + b− x + u̇|(x,y)= a + b− x + z̈|{z=x+y−(p+q), u=a+b−x} (C.14)

Applying above steps for Eq. (C.10), we can have the following simplified two-dimensional

autonomous coupled form of kinetic equations:

ẋ = µ(a + b− x)
(

a2 + 2(a + b)(p + q− x − y) + (a + b− x)(−3(a + b) + x + y) + (a + b− x)2

+ 2a
(

1
a + b

+ b
)

+ b2− α(p + q− x− y)4 + β(p + q− x− y)6− 1
)

+ (a + b)2(−p− q + x + y),

ẏ =−µ(a+b−x)
(

a2+2(a+b)(p+q−x−y)+(a+b−x)(−3(a+b)+x+y)+(a+b−x)2+2a
(

1
a + b

+b
)

+ b2 − α(p + q − x − y)4 + β(p + q − x − y)6 − 1
)

+ (a + b)2(p + q − x − y) + a + b − x.

(C.15)

The fixed point (i.e. (xs, ys) = (p, q)) of (C.1) remain unchanged for the bi-rhythmic Schnaken-

berg model (C.15) and if we shift the fixed point (xs, ys) = (p, q) to the origin using the
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transformation x = x + p and y = y + q then system (C.15) is transformed into the following

set of equations:

ẋ = a2(−µx + x + y) + 2a
(

µx
(

y − 1
a + b

)
+ b(−µx + x + y)

)
+ bµx

(
x

(a + b)2 + 2y
)

+ b2(−µx + x + y) + µx
(
−βx6 − 6βx5y + x4 (α − 15βy2) + 4x3y

(
α − 5βy2)

+ x2
(

6αy2 − 15βy4
)

+ x
(
−6βy5 + 4αy3 + y

)
− βy6 + αy4 + 1

)
,

ẏ = x
(

a2(µ− 1) + a
(

2µ

(
1

a + b
− y
)

+ 2b(µ− 1)
)

+ b2(µ− 1)− 2bµy− µ + βµy6 − αµy4 − 1
)

+ µx2
(
− b

(a + b)2 + 6βy5 − 4αy3 − y
)
− y(a + b)2 + βµx7 + 6βµx6y

− µx5 (α − 15βy2) + 4µx4y
(
5βy2 − α

)
+ 3µx3y2 (5βy2 − 2α

)
.

(C.16)

The corresponding bi-rhythmic phase portrait is given in Fig. C.4.
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y

Figure C.4: Bi-rhythmic Schnakenberg model: Phase space plots in the (x, y) coordinate system where the
thin curves are the plots for Eq. (C.15) (having non-zero fixed point) and the bold curves
are for Eq. (C.16) (containing trivial fixed point) is the projection to the origin of Eq. (C.15).
Here, the parameter values are a = 0.001422, b = 0.9806, α = 9.89762, β = 6.93655 and
µ = 0.1.

c.1.1 Alternative situation

Now, if we extend the Schnakenberg bi-rhythmic model by a velocity dependent nonlinearity

−αż4 + βż6 instead of position dependent nonlinearity −αz4 + βz6 by keeping unchanged the

parameter values of a and b (are, 0.001422 and 0.9806) then equation (C.10) looks like,

z̈ + µ{ f00 − 2(a + b)z + (p + q− 3(a + b) + z)ż + ż2 − αż4 + βż6}ż + ω2z = 0, (C.17)
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and then after rescaling we have,

ξ̈ + µε

[
1
σ
{ f00 − 2(a + b)ξ + (p + q− 3(a + b) + ξ)ωξ̇ + ω2ξ̇2 − αω4ξ̇4 + βω6ξ̇6}

]
ξ̇ + ξ = 0.(C.18)

So, after applying RG analysis one obtains,

dH(s)
ds

= −
µεH

(
64 f00 + 35βH6ω6 − 40αH4ω4 + 48H2ω2)

128σ
+ O(µ2) and

dθ(s)
ds

=
µεω

8σ
H2 + O(µ2), (C.19)

From the above expressions of (C.19), the amplitude equation provides the bi-rhythmic pa-

rameter region of α− β which is shown in Fig. C.5(a) and the respective phase space plots

are given in Fig. C.5(b).
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Figure C.5: Bi-rhythmic Schnakenberg model (Rayleigh type extension): Plot (a) shows the parameter
region for Schnakenberg bi-rhythmic oscillator and (b) shows the corresponding bi-
rhythmic phase space plots for a fixed set of parameter values a = 0.001422, b =
0.9806, α = 8.24548, β = 19.2277 and µ = 0.01.

Finally, inverse transformations help us to have the kinetic flow equations in the (x, y)

plane as

ẋ = µ(a+b−x)
(

a2 +2(a+b)(p+q−x−y)−α(a+b−x)4 +β(a+b−x)6 +(a+b−x)(−3(a+b)+x+y)

+ (a + b − x)2 + 2a
(

1
a + b

+ b
)

+ b2 − 1
)

+ (a + b)2(−p − q + x + y),

ẏ =−µ(a+b−x)
(

a2 +2(a+b)(p+q−x−y)−α(a+b−x)4 +β(a+b−x)6 +(a+b−x)(−3(a+b)+x+y)

+ (a + b − x)2 + 2a
(

1
a + b

+ b
)

+ b2 − 1
)

+ (a + b)2(p + q − x − y) + a + b − x.

(C.20)
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Shifting the fixed point of the above system to the origin, it reduces to,

ẋ = a2(−µx + x + y) + 2a
(

µx
(

y − 1
a + b

)
+ b(−µx + x + y)

)
+ bµx

(
x

(a + b)2 + 2y
)

+ b2(−µx + x + y) + µx
(
−βx6 + αx4 + xy + 1

)
,

(C.21)
ẏ = x

(
a2(µ − 1) + a

(
2µ

(
1

a + b
− y
)

+ 2b(µ − 1)
)

+ b2(µ − 1)− 2bµy − µ − 1
)

+ x2
(

µ(−y)− bµ

(a + b)2

)
− y(a + b)2 + βµx7 − αµx5.

c.2 bi-rhythmic λ − ω system

Previously we have seen that amplitude equation is able to say about multi-rhythmicity

along with their multi-rhythmic oscillatiory location for a weakly nonlinear system. A mono-

rhythmic λ − ω system (A.1) can easily be extended into a bi-rhythmic one in addition to

some higher order polynomial in a systematic way and the coefficients of the higher degree

polynomial reflects in the amplitude equation or vice versa. For a better demonstration,

considering a general λ − ω system (A.1), say, λ(r ) = (1 − r2 ) and ω (r ) = 1, then the

corresponding system becomes,

dx
dt

= (1 − r2 )x − y,

dy
dt

= x + (1 − r2 )y, (C.22)

having the amplitude and phase equation,

dr
dt

= r (1 − r2 ) ,

dφ

dt
= 1. (C.23)

It clearly shows that the considered λ − ω system (C.22) has a unique stable limit cycle of

amplitude 1 and the respective phase solution is, φ = φ I ni t i a l + t, and the mono-rhythmicity

can easily be verified by the time series as well as phase space plots which are given in

Fig. C.6.

So, we have a single stable limit cycle for the above consideration of λ(r) as it has an

unique non-zero root of r. Now, if we extend the degree of the polynomial of r in the am-

plitude equation to have multiple distinct non-zero roots (here three) by following Blows
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Figure C.6: Mono-rhythmic λ−ω system (C.22): Plot (a) is the time series for mono-rhythmicity and (b)
shows the corresponding limit cycle.
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Figure C.7: Parameter space for bi-rhythmic λ−ω.

theorem[272] (like Kaiser model) as λ(r) = (1− r2 + αr4 − βr6) then we have the following

amplitude and phase equations:

dr
dt

= r(1− r2 + αr4 − βr6),

dφ

dt
= 1. (C.24)

After that, searching for three distinct non-zero real roots, the amplitude equation provides

a parameter region for α− β is given in Fig. C.7.
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Figure C.8: Bi-rhythmic λ−ω system (C.25): Plot (a) is the time series for bi-rhythmicity and (b) shows
the corresponding limit cycles.

If we choose a point from the parameter region (Fig. C.7) with (α, β) = (0.304681, 0.0280317)

then we must have three distinct real roots of magnitudes, r = 1.39833, 1.78444, 2.39365—

showing a bi-rhythmic behaviour. Finally, system of equations can be written as,

dx
dt

= (1− (x2 + y2) + α(x2 + y2)2 − β(x2 + y2)3)x− y,

dy
dt

= x + (1− (x2 + y2) + α(x2 + y2)2 − β(x2 + y2)3)y. (C.25)

This explained method can physically be examined for the creation of higher order nonlinear

processes and its applicability can be verified. The respective bi-rhythmic time series and

phase plots are shown in Fig. C.8 where the black curve (continuous) is for the small stable

limit cycle and blue one (dashed) is for larger stable cycle.
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D
B I - R H Y T H M I C I T Y I N T H E K A I S E R O S C I L L AT O R : E F F E C T O F

D E L AY

d.1 bi-rhythmicity in the kaiser oscillator : effect of delay

Consider the Kaiser model in presence of a position dependent delay:

ẍ + µ
(
−1 + x2 − αx4 + βx6

)
ẋ + x− Kx(t− τ) = 0, (D.1)

(0 < ε, τ � 1). When K = 0, the system is either mono-rhythmic or bi-rhythmic depending

on the values of α and β as depicted in Fig. (D.1). It is expected that for small values of K and

τ, the behaviour of the Kaiser oscillator should be qualitatively similar, although the region

in the α-β plane where the bi-rhythmic behaviour is seen would be shifted slightly. This is

shown in Fig. (D.1) that has been obtained by employing the Krylov–Bogolyubov method to

write the equations for the amplitude as well as the phase of the system’s response as

ṙ = −
r
(
64K sin τ + µ

(
5βr6 − 8αr4 + 16r2 − 64

))
128

, (D.2a)

φ̇ = −1
2

K cos τ, (D.2b)

respectively. Here higher order terms have been neglected. It is clear from the existence

of non-overlapping regions of bi-rhythmicity that the delay factor may transform mono-

rhythmicity to bi-rhythmicity or vice versa.

d.2 flow equations : multicycle penvo with delay

On imposing parametric excitation to the nonlinearity in Eq. (D.1), we can write,

ẍ + µ [1 + γ cos(Ωt)]
(
−1 + x2 − αx4 + βx6

)
ẋ

+ x− Kx(t− τ) = 0. (D.3)
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Figure D.1: Delay changes rhythmicity. This figure showcases for what values of α and β, systems (7.6)
and (D.1) are bi-rhythmic—the green and the red zones, respectively. In other words, the
changes in the bi-rhythmic zone in α-β parameter space in the presence of the time delay
(K = 0.1 and τ = 0.2) have been exhibited. Here, µ = 0.1.

The corresponding amplitude and phase equations are

ṙ = − 1
128

r
(

64K sin τ + µ
(

5βr6 − 8αr4 + 16r2 − 64
))

+AΩ(r, φ; γ) + O(µ2); (D.4a)

φ̇ = −1
2

K cos τ + BΩ(r, φ; γ) + O(µ2), (D.4b)
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where higher order terms have been neglected, and AΩ and BΩ are functions with singu-
larities at Ω = 2, 4, 6 and 8. One may resort to the L’Hôspitals’ rule and go to p-q plane to
rewrite the amplitude and the phase equations in terms of the coordinate of the plane:

ṗ2 = −Kp sin τ

2
+

Kq cos τ

2
− 1

64
βγµp7 − 1

128
5βµp7 +

1
64

αγµp5 +
1
16

αµp5 +
3

32
βγµp5q2 − 15

128
βµp5q2 − µp3

8

+
15
64

βγµp3q4 − 15
128

βµp3q4 − 5
32

αγµp3q2 +
1
8

αµp3q2 − γµp
4

+
µp
2

+
1
8

βγµpq6 − 5
128

βµpq6 − 11
64

αγµpq4

+
1
16

αµpq4 +
1
4

γµpq2 − 1
8

µpq2,

q̇2 = −Kp cos τ

2
− Kq sin τ

2
− 1

8
βγµp6q− 5

128
βµp6q− 15

64
βγµp4q3 − 15

128
βµp4q3 +

11
64

αγµp4q +
1

16
αµp4q

− 3
32

βγµp2q5 − 15
128

βµp2q5 +
5
32

αγµp2q3 +
1
8

αµp2q3 − 1
4

γµp2q− 1
8

µp2q +
1

64
βγµq7 − 1

128
5βµq7

− 1
64

αγµq5 +
1
16

αµq5 − µq3

8
+

γµq
4

+
µq
2

;

ṗ4 = −Kp sin τ

2
+

Kq cos τ

2
+

1
64

βγµp7 − 1
128

5βµp7 − 1
32

αγµp5 +
1
16

αµp5 +
9

64
βγµp5q2 − 15

128
βµp5q2 +

1
16

γµp3

−µp3

8
− 5

64
βγµp3q4 − 15

128
βµp3q4 − 1

16
αγµp3q2 +

1
8

αµp3q2 +
µp
2
− 13

64
βγµpq6 − 5

128
βµpq6 +

7
32

αγµpq4

+
1
16

αµpq4 − 3
16

γµpq2 − 1
8

µpq2,

q̇4 = −Kp cos τ

2
− Kq sin τ

2
− 13

64
βγµp6q− 5

128
βµp6q− 5

64
βγµp4q3 − 15

128
βµp4q3 +

7
32

αγµp4q +
1

16
αµp4q

+
9
64

βγµp2q5 15
128

βµp2q5 − 1
16

αγµp2q3 +
1
8

αµp2q3 − 3
16

γµp2q− 1
8

µp2q +
1
64

βγµq7 − 1
128

5βµq7 − 1
32

αγµq5

+
1
16

αµq5 +
1

16
γµq3 − µq3

8
+

µq
2

;

ṗ6 = −Kp sin τ

2
+

Kq cos τ

2
+

1
64

βγµp7 − 1
128

5βµp7 − 1
64

αγµp5 +
1
16

αµp5 − 3
32

βγµp5q2 − 15
128

βµp5q2

−µp3

8
− 15

64
βγµp3q4 − 15

128
βµp3q4 +

5
32

αγµp3q2 +
1
8

αµp3q2 +
µp
2

+
1
8

βγµpq6 − 5
128

βµpq6

− 5
64

αγµpq4 +
1

16
αµpq4 − 1

8
µpq2,

q̇6 = −Kp cos τ

2
− Kq sin τ

2
− 1

8
βγµp6q− 5

128
βµp6q +

15
64

βγµp4q3 − 15
128

βµp4q3 +
5
64

αγµp4q +
1
16

αµp4q

+
3
32

βγµp2q5 − 15
128

βµp2q5 − 5
32

αγµp2q3 +
1
8

αµp2q3 − 1
8

µp2q− 1
64

βγµq7 − 1
128

5βµq7 +
1
64

αγµq5

+
1
16

αµq5 − µq3

8
+

µq
2

;

ṗ8 = −Kp sin τ

2
+

Kq cos τ

2
+

1
256

βγµp7 − 1
128

5βµp7 +
1
16

αµp5 − 21
256

βγµp5q2 − 15
128

βµp5q2 − µp3

8

+
35
256

βγµp3q4 − 15
128

βµp3q4 +
1
8

αµp3q2 +
µp
2
− 7

256
βγµpq6 − 5

128
βµpq6 +

1
16

αµpq4 − 1
8

µpq2,

q̇8 = −Kp cos τ

2
− Kq sin τ

2
− 7

256
βγµp6q− 5

128
βµp6q +

35
256

βγµp4q3 − 15
128

βµp4q3 +
1

16
αµp4q

− 21
256

βγµp2q5 − 15
128

βµp2q5 +
1
8

αµp2q3 − 1
8

µp2q +
1

256
βγµq7 − 1

128
5βµq7 +

1
16

αµq5 − µq3

8
+

µq
2

.

The subscript indicates the value of Ω in Eq. (D.3) for which the pair of above first order equations are written

in (p,q) coordinates.
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